# Appendix I

# Environmental sample inventory and assessment

| Table AI.I                       | Sample         | inventory               |                         |                   |                                                   |                                                                                                  |                                                                                                                                                |     |
|----------------------------------|----------------|-------------------------|-------------------------|-------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Sample<br>type                   | Phase          | Context                 | Sample<br><no.></no.>   | Sample<br>size    | Sampled for                                       | Assessment programme                                                                             | Analysis Commenn                                                                                                                               | nts |
| Bulk-sed<br>Bulk-sed<br>Bulk-sed | 9b<br>8c<br>8c | 40053<br>40018<br>40018 | 40023<br>40004<br>40005 | 30L<br>10L<br>10L | Small verts<br>Clast lithology<br>Clast lithology | Prelim assessment April 2004 - nothing found<br>-<br>-                                           | -<br>Clast lithology & angularity/roundness<br>Lost                                                                                            |     |
| Bulk-sed                         | 8c             | 40071                   | 40001                   | 10L               | Clast lithology                                   | -                                                                                                | Clast lithology & angularity/roundness                                                                                                         |     |
| Bulk-sed<br>Bulk-sed             | с<br>х<br>х    | 40071                   | 40002                   | 10L<br>20I        | Clast lithology                                   | -<br>Dealim accarcement Annil 2004 - nothing found                                               | Clast lithology & angularity/roundness                                                                                                         |     |
| Bulk-sed                         | 6              | 40078                   | 40100                   | 220L              | Elephant bits                                     | Assessed for small vertebrates, larger identifiable<br>elembart hones and lithic arrefacts. 2009 |                                                                                                                                                |     |
| Bulk-sed                         | 9              | 40078                   | 40101                   | 110L              | Elephant bits                                     | Assessed for small vertebrates, larger identifiable<br>elephant bones and lithic artefacts, 2009 | 1                                                                                                                                              |     |
| Bulk-sed                         | 9              | 40078                   | 40128                   | 100L              | megafauna                                         | Assessed for small vertebrates, 2009                                                             |                                                                                                                                                |     |
| Bulk-sed                         | 9              | 40078                   | 40159                   | 110L              | Elephant bits                                     | Assessed for small vertebrates, larger identifiable<br>elephant bones and lithic artefacts, 2009 |                                                                                                                                                |     |
| Bulk-sed                         | 9              | 40078                   | 40194                   | 10L               | megafauna                                         | 1                                                                                                |                                                                                                                                                |     |
| Bulk-sed                         | 9              | 40078                   | 40275                   | 40L               | Small verts                                       | Assessed for small vertebrates, 2009                                                             |                                                                                                                                                |     |
| Bulk-sed                         | 9              | 40078                   | 40276                   | 10L               | Insects                                           | 1                                                                                                |                                                                                                                                                |     |
| Bulk-sed                         | 9              | 40078                   | 40327                   | 20L               | Small verts                                       | Assessed for small vertebrates, 2009                                                             | Small vertebrate material contributes to 2010 analysis                                                                                         |     |
| Bulk-sed                         | 9              | 40100                   | 40176                   | 30L               | Small verts                                       | Prelim assessment April 2004 - nothing found                                                     |                                                                                                                                                |     |
| Bulk-sed                         | 6c             | 40039                   | 40238                   | 0.2L              | Small verts                                       | Assessed for SVs & molluscs                                                                      | Small vertebrate material contributes to 2010 analysis                                                                                         |     |
| Bulk-sed                         | 9              | 40068                   | 40026                   | 30L               | Small verts                                       | Prelim assessment April 2004 - nothing found                                                     |                                                                                                                                                |     |
| Bulk-sed                         | 9              | 40068                   | 40032                   | 30L               | Small verts                                       | Prelim assessment April 2004 - a few frags of                                                    |                                                                                                                                                |     |
| Bulk-sed                         | 9              | 40068                   | 40203                   | 10L               | Charred                                           | large animal bone<br>Assessed 2009                                                               | Wood ID and C14 by Oxford Archaeology                                                                                                          |     |
|                                  |                |                         |                         |                   | remains                                           |                                                                                                  |                                                                                                                                                |     |
| Bulk-sed                         | 9              | 40069                   | 40029                   | 30L               | Small verts                                       | Prelim assessment April 2004 - nothing found                                                     |                                                                                                                                                |     |
| Bulk-sed                         | 9              | 40162                   | 40346                   | 20L               | Insects                                           | Assessed for insects, 2009                                                                       |                                                                                                                                                |     |
| Bulk-sed                         | 6b             | 40070                   | 40035                   | 30L               | Small verts                                       | Prelim assessment April 2004 - abundant<br>molluscs and small vertebrates                        | Material forms basis of mollusc and SV analyses in<br>J Quaternary Sci paper (Wenban-Smith et al. 2006);<br>small vertebrates analysed in 2010 |     |
| Bulk-sed                         | 6b             | 40070                   | 40160                   | 50L               | Small verts                                       | Prelim assessment April 2004 - abundant                                                          |                                                                                                                                                |     |
| Bulk-sed                         | 6b             | 40070                   | 40162                   | 50L               | Small verts                                       | Prelim assessment April 2004 - abundant<br>molliness and small marthmates                        | Small vertebrate material contributes to 2010                                                                                                  |     |
| Bulk-sed                         | 6b             | 40070                   | 40182                   | 20L               | Small verts                                       | Prelim assessment April 2004 - scarce molluscs<br>and common small vertebrates                   | -                                                                                                                                              |     |
| Bulk-sed                         | 6b             | 40070                   | 40183                   | 50L               | Small verts                                       |                                                                                                  | 1                                                                                                                                              |     |
| Bulk-sed                         | 6b             | 40070                   | 40184                   | 40L               | Small verts                                       | -                                                                                                | -                                                                                                                                              |     |

| Table AI.I                                   | (continu       | ed I)                            |                                  |                            |                                                          |                                                                                                                                                                      |                                                                                                                                 |                                                |
|----------------------------------------------|----------------|----------------------------------|----------------------------------|----------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Sample<br>type                               | Phase          | Context                          | Sample<br><no.></no.>            | Sample<br>size             | Sampled for                                              | Assessment programme                                                                                                                                                 | Analysis                                                                                                                        | Comments                                       |
| Bulk-sed<br>Bulk-sed                         | 6b<br>6b       | 40070<br>40070                   | 40185<br>40186                   | 10L<br>20L                 | Small verts<br>Small verts                               | -<br>Prelim assessment April 2004 - no molluscs,<br>اینار مصیبیون قسوال بمیدمایینود                                                                                  | 1 1                                                                                                                             |                                                |
| Bulk-sed<br>Bulk-sed                         | 6b<br>6b       | 40070<br>40070                   | 40237<br>40241                   | 190L<br>300L               | Small verts<br>Small verts                               |                                                                                                                                                                      |                                                                                                                                 | Sieved, not<br>picked; residue<br>retained for |
| Bulk-sed<br>Bulk-sed<br>Bulk-sed             | 6b<br>6b       | 40070<br>40070<br>40070          | 40251<br>40274<br>40277          | 150L<br>80L<br>10L         | Small verts<br>Small verts<br>Small verts                | -<br>-<br>Taken away by SA Parfitt                                                                                                                                   | a<br>-<br>Small vertebrate material contributes to 2010 analysis                                                                | archive                                        |
| Bulk-sed<br>Bulk-sed<br>Bulk-sed<br>Bulk-sed | 6666<br>6      | 40070<br>40070<br>40070<br>40070 | 40280<br>40288<br>40289<br>40310 | 10L<br>100L<br>100L<br>10L | Small verts<br>Small verts<br>Small verts<br>Small verts | -<br>Assessed for ostracods & small vertebrates, 2009                                                                                                                | -<br>-<br>Small vertebrate material contributes to 2010 analysis;<br>also, a few ostracods                                      |                                                |
| burk-sea<br>Bulk-sed<br>Bulk-sed             | 00<br>6b       | 40070<br>40070<br>40070          | 40313<br>40324<br>40412          | 10L<br>30L<br>100L         | Small verts<br>Small verts<br>Small verts                | Assessed for ostracods & small vertebrates, 2010<br>-<br>-                                                                                                           | Small verteorate material contributes to 2010 analysis<br>-<br>-                                                                | Sieved, not<br>picked; residue<br>retained for |
| Bulk-sed<br>Bulk-sed                         | 6b<br>6b       | 40143<br>40143                   | 40267<br>40284                   | 100L<br>10L                | Small verts<br>Small verts                               | Assessed for small vertebrates, 2009<br>Assessed for small vertebrates, 2009                                                                                         | Small vertebrate material contributes to 2010 analysis<br>Small vertebrate & molluscan material contributes to<br>2010 analysis | arcuve                                         |
| Bulk-sed<br>Bulk-sed<br>Bulk-sed             | 6b<br>6b<br>6a | 40144<br>40144?<br>40039         | 40311<br>40297<br>40022          | 10L<br>30L<br>30L          | Small verts<br>Small verts<br>Small verts                | Assessed for small vertebrates, pollen and<br>ostracods, 2009<br>Straight-to-analysis<br>Prelim assessment April 2004 - no molluscs,<br>but common small vertebrates | Small vertebrate material contributes to 2010 analysis<br>Small vertebrate material contributes to 2010 analysis<br>-           |                                                |
| Bulk-sed<br>Bulk-sed                         | 6a<br>6a       | 40039<br>40040                   | 40261<br>40021                   | 60L<br>30L                 | Small verts<br>Small verts                               | Assessed for small vertebrates, 2009<br>Prelim assessment April 2004 -                                                                                               | Small vertebrate material contributes to 2010 analysis<br>-                                                                     |                                                |
| Bulk-sed<br>Bulk-sed<br>Bulk-sed             | 00<br>6a<br>6a | 40070<br>40103<br>40103          | 40283<br>40175<br>40312          | 30L<br>20L                 | Small verts<br>Small verts<br>Small verts                | -<br>Prelim assessment April 2004 -<br>Small vertebrates, ostracods & molluscs                                                                                       | -<br>-<br>Small vertebrate material contributes to 2010 analysis                                                                |                                                |
| Bulk-sed<br>Bulk-sed                         | 9              | 40158<br>40158                   | 40262<br>40263                   | 30L<br>20L                 | Small verts<br>Insects                                   | (tufa channel, Column 3 - eastern offset)<br>Assessed for small vertebrates, 2009<br>Assessed for insects, 2009                                                      |                                                                                                                                 |                                                |

| Table AI.I (                     | continu              | ed 2)                   |                         |                   |                                        |                                                                                                                |                                                              |          |
|----------------------------------|----------------------|-------------------------|-------------------------|-------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------|
| Sample<br>type                   | Phase                | Context                 | Sample<br><no.></no.>   | Sample<br>size    | Sampled for                            | Assessment programme                                                                                           | Analysis                                                     | Comments |
| Bulk-sed<br>Bulk-sed<br>Bulk-sed | 9 7 7                | 40158<br>40043<br>40164 | 40413<br>40350<br>40361 | 20L<br>30L<br>40L | Insects<br>Small verts<br>Small verts; | Assessed for insects, 2009<br>Prelim assessment Aug 2004 -<br>Assessed for ostracods & small vertebrates, 2009 | -<br>-<br>Clast lithology & angularity/roundness             |          |
| Duilt cod                        | ٢                    | 10166                   | 10340                   | 301               | PLUS clast<br>lithology<br>Smoll monto | Dealine concernment Arrs 2001                                                                                  |                                                              |          |
| Bulk-sed                         |                      | 40166                   | 40414                   | 40L               | Small verts                            | A remain assessment range 2007 -<br>Assessed for pollen, ostracods & small                                     | 1 1                                                          |          |
| Bulk-sed                         | 7                    | 40166                   | 40415                   | 10L               | Small verts                            | vertebrates, 2009<br>Assessed for pollen, ostracods & small<br>vertebrates, 2009                               |                                                              |          |
| Bulk-sed                         | 7                    | 40166                   | 40416                   | 40L               | Small verts                            | Assessed for pollen, ostracods & small vertebrates, 2009                                                       | 1                                                            |          |
| Bulk-sed                         | 7                    | 40166                   | 40417                   | 10L               | Small verts                            | Assessed for pollen, ostracods & small vertebrates, 2009                                                       | 1                                                            |          |
| Bulk-sed                         | 7                    | 40167                   | 40003                   | 10L               | Clast lithology                        |                                                                                                                | Clast lithology & angularity/roundness                       |          |
| Bulk-sed                         | 7                    | 40167                   | 40420                   | 50L               | Clast lithology                        | Assessed for ostracods and small vertebrates, 2009                                                             | Clast lithology & angularity/roundness                       |          |
| Bulk-sed                         | 9                    | 40039                   | 40242                   | 10L               | Small verts                            | х<br>Т                                                                                                         |                                                              |          |
| Bulk-sed                         | 9                    | 40100                   | 40161                   | 30L               | Small verts                            | Prelim assessment April 2004 -                                                                                 | 1                                                            |          |
| Bulk-sed                         | Ĵ.                   | 40025                   | 40020                   | 30L               | Small verts                            | Prelim assessment April 2004 -                                                                                 |                                                              |          |
| Bulk-sed                         | Ŋ                    | 40025                   | 40285                   | 10L               | Small verts                            | Assessed for small vertebrates, 2009                                                                           |                                                              |          |
| Bulk-sed                         | 5                    | 40025                   | 40286                   | 100L              | Small verts                            | Assessed for small vertebrates, 2009                                                                           | Small vertebrate material contributes to 2010 analysis       |          |
| Bulk-sed                         | 2                    | 40025                   | 40343                   | 100L              | Small verts                            | Assessed for small vertebrates, 2009                                                                           | Small vertebrate material contributes to 2010 analysis       |          |
| Bulk-sed                         | Ω                    | 40025                   | 40348                   | 100L              | Small verts                            | Assessed for small vertebrates, 2009                                                                           | Small vertebrate material contributes to 2010 analysis       |          |
| Bulk-sed                         | LC L                 | 40025                   | 40380                   | 280L              | Small verts                            | Assessed for small vertebrates, 2009                                                                           | Small vertebrate material contributes to 2010 analysis       |          |
| Bulk-sed<br>Bulb-sed             | n u                  | C2004                   | 40040                   | 301               | Small verts<br>Small verts             | Assessed for small verteorates, 2009<br>Dealim presentent Annil 2004                                           | SITIALI VET LEDEALE ITTALETTAL CONTRIDUCES LO 2010 ATTALYSIS |          |
| Bulk-sed                         | n LO                 | 40067                   | 40041                   | 30L               | Small verts                            |                                                                                                                |                                                              |          |
| <b>Bulk-sed</b>                  | 3                    | 40028                   | 40292                   | 20L               | Small verts                            | Prelim assessment July 2004 -                                                                                  |                                                              |          |
| Bulk-sed                         | ŝ                    | 40062                   | 40042                   | 30L               | Small verts                            | Prelim assessment April 2004 -                                                                                 | Small vertebrates, molluscs and ostracods                    |          |
| Bulk-sed                         | $\tilde{\mathbf{c}}$ | 40062                   | 40043                   | 30L               | Small verts                            | Prelim assessment April 2004 -                                                                                 |                                                              |          |
| Bulk-sed                         | 3                    | 40062                   | 40045                   | 30L               | Small verts                            | Prelim assessment April 2004 -                                                                                 |                                                              |          |
| Bulk-sed                         | ŝ                    | 40062                   | 40291                   | 100L              | Small verts                            | Assessed for small vertebrates, 2009                                                                           |                                                              |          |
| Bulk-sed                         | 0                    | 40064                   | 40064                   | 30L               | Small verts                            | Prelim assessment April 2004 -                                                                                 |                                                              |          |
| Bulk-sed                         | 0                    | 40064                   | 40114                   | 20L               | Small verts                            | Prelim assessment April 2004 -                                                                                 |                                                              |          |
| Bulk-sed                         | 0                    | 40065                   | 40065                   | 30L               | Small verts                            | Prelim assessment April 2004 -                                                                                 |                                                              |          |
| Bulk-sed                         | 0                    | 40077                   | 40116                   | 30L??             | Small verts                            | Prelim assessment April 2004 -                                                                                 |                                                              |          |
| Bulk-sed                         | 1                    | 40056                   | 40115                   | 30L               | Small verts                            | Prelim assessment April 2004 -                                                                                 | -                                                            |          |
| Bulk-sed                         | 1                    | 40057                   | 40059                   | 30L               | Small verts                            | Prelim assessment April 2004 -                                                                                 | 1                                                            |          |

| Table AI.I (cor                      | ntinue   | 1 3)                    |                         |                   |                                           |                                                                      |                                                                                                                                                                         |
|--------------------------------------|----------|-------------------------|-------------------------|-------------------|-------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample I<br>type                     | Phase    | Context                 | Sample<br><no.></no.>   | Sample<br>size    | Sampled for                               | Assessment programme                                                 | Analysis Comments                                                                                                                                                       |
| Bulk-sed<br>Bulk-sed                 | 1 1      | 40058<br>40059          | 40055<br>40046          | 30L<br>30L        | Small verts<br>Small verts                | Prelim assessment April 2004 -<br>Prelim assessment April 2004 -     |                                                                                                                                                                         |
| Bulk-sed                             | 6b?      | 40144?                  | 40336                   | 10L               | Small verts                               | Assessed for small vertebrates, 2009                                 | Small vertebrate material contributes to 2010 analysis                                                                                                                  |
| (p-sieved)<br>Bulk-sed               | 6b       | 40070                   | 40290                   | 100L              | Small verts                               |                                                                      | Sieved and residues sorted for larger identifiable remains                                                                                                              |
| (p-sieved)<br>Bulk-sed               | 6b       | 40070                   | 40329                   | 62:               | Small verts                               |                                                                      | Sieved and residues sorted for larger identifiable remains                                                                                                              |
| (p-sieved)<br>Bulk-sed               | 6b       | 40070                   | 40330                   | £:                | Small verts                               |                                                                      | Sieved and residues sorted for larger identifiable remains                                                                                                              |
| (p-sieved)<br>Bulk-sed               | 6b       | 40070                   | 40331                   | દ                 | Small verts                               |                                                                      | Sieved and residues sorted for larger identifiable remains                                                                                                              |
| (p-sieved)<br>Bulk-sed               | 6b       | 40070                   | 40332                   | 20L               | Small verts                               |                                                                      | Sieved and residues sorted for larger identifiable remains                                                                                                              |
| (p-sieved)<br>Bulk-sed               | 6b       | 40070                   | 40335                   | 80L               | Small verts                               |                                                                      | Sieved and residues sorted for larger identifable remains                                                                                                               |
| (p-sieved)<br>Bulk-sed               | 6b       | 40070                   | 40337                   | £:                | Small verts                               |                                                                      | Sieved and residues sorted for larger identifiable remains                                                                                                              |
| (p-sieved)<br>Bulk-sed               | 6b       | 40070                   | 40338                   | 10L               | Small verts                               |                                                                      | Sieved and residues sorted for larger identifiable remains                                                                                                              |
| (p-sieved)<br>Bulk-sed               | 6b       | 40070                   | 40339                   | 11                | Small verts                               |                                                                      | Sieved and residues sorted for larger identifiable remains                                                                                                              |
| (p-sieved)<br>Bulk-sed               | 6b       | 40070                   | 40347                   | 75L               | Small verts                               |                                                                      | Sieved and residues sorted for larger identifiable remains                                                                                                              |
| (p-sieved)<br>Bulk-sed               | 6b       | 40070                   | 40351                   | 10L               | Small verts                               |                                                                      | Sieved and residues sorted for larger identifiable remains                                                                                                              |
| (p-sievea)<br>Bulk-sed               | 6b       | 40070                   | 40381                   | 40L               | Small verts                               | 1                                                                    | Sieved and residues sorted for larger identifiable remains                                                                                                              |
| (p-sieved)<br>Bulk-sed               | 6b       | 40144                   | 40333                   | 60L               | Small verts                               | Assessed for small vertebrates, 2009                                 | Small vertebrate material contributes to 2010 analysis                                                                                                                  |
| (p-sieved)<br>Bulk-sed               | 6b       | 40144                   | 40334                   | 80L               | Small verts                               | Assessed for small vertebrates, 2009                                 |                                                                                                                                                                         |
| (p-sieved)<br>Bulk-sed<br>(p-sieved) | Ŋ        | 40025                   | 40382                   | ¢;                | Small verts                               | Assessed for small vertebrates, 2009                                 | Small vertebrate material contributes to 2010 analysis                                                                                                                  |
| Bulk-inc<br>Bulk-inc<br>Bulk-inc     | 6b<br>6b | 40070<br>40070<br>40070 | 40314<br>40315<br>40316 | 30L<br>30L<br>30L | Small verts<br>Small verts<br>Small verts | Straight-to-analysis<br>Straight-to-analysis<br>Straight-to-analysis | Small vertebrates & molluscs (tufa channel, Column 2)<br>Small vertebrates & molluscs (tufa channel, Column 2)<br>Small vertebrates & molluscs (tufa channel, Column 2) |

| Table AI.1                       | (continu       | ed 4)                   |                         |                   |                                           |                                                                                    |                                                                                                                                                                         |     |
|----------------------------------|----------------|-------------------------|-------------------------|-------------------|-------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Sample<br>type                   | Phase          | Context                 | Sample<br><no.></no.>   | Sample<br>size    | Sampled for                               | Assessment programme                                                               | Analysis Comment                                                                                                                                                        | uts |
| Bulk-inc<br>Bulk-inc             | 6b<br>6b       | 40070<br>40070          | 40317<br>40318          | 30L<br>30L        | Small verts<br>Small verts                | Straight-to-analysis<br>Straight-to-analysis                                       | Small vertebrates & molluscs (tufa channel, Column 2)<br>Small vertebrates & molluscs (tufa channel, Column 2)                                                          |     |
| Bulk-inc<br>Bulk-inc<br>Bulk-inc | 6b<br>6a<br>6a | 40070<br>40103<br>40103 | 40319<br>40320<br>40325 | 20L<br>20L<br>30L | Small verts<br>Small verts<br>Small verts | Straight-to-analysis<br>Straight-to-analysis<br>Straight-to-analysis               | Small vertebrates & molluscs (tufa channel, Column 2)<br>Small vertebrates & molluscs (tufa channel, Column 2)<br>Small vertebrates & molluscs (tufa channel, Column 2) |     |
| Bulk-inc<br>Bulk-inc             | 6              | 40078<br>40144          | 40293<br>40294          | 30L               | Small verts<br>Small verts                | Straight-to-analysis<br>Straight-to-analysis                                       | Small vertebrates & molluscs (tufa channel, Column 1)<br>Small vertebrates & molluscs (tufa channel Column 1)                                                           |     |
| Bulk-inc                         | 3 8 5          | 40144                   | 40295                   | 20L               | Small verts                               | Straight-to-analysis                                                               | Small vertebrates & molluses (tufa channel, Column 1)                                                                                                                   |     |
| Bulk-inc<br>Bulk-inc             | 00<br>6b       | 40070<br>40070          | 40296 $40298$           | 10L<br>20L        | Small verts<br>Small verts                | Straight-to-analysis<br>Straight-to-analysis                                       | Small vertebrates & molluscs (tufa channel, Column 1)<br>Small vertebrates & molluscs (tufa channel, Column 1)                                                          |     |
| Bulk-inc                         | 6b             | 40070                   | 40299                   | 20L               | Small verts                               | Straight-to-analysis                                                               | Small vertebrates & molluscs (tufa channel, Column 1)                                                                                                                   |     |
| Bulk-inc<br>Bulk-inc             | 6a<br>6a       | 40070 $40103$           | 40300<br>40301          | 20L<br>40L        | Small verts<br>Small verts                | Straight-to-analysis<br>Straight-to-analysis                                       | Small vertebrates & molluscs (tufa channel, Column 1)<br>Small vertebrates & molluscs (tufa channel, Column 1)                                                          |     |
| Bulk-inc                         | 6a             | 40039                   | 40302                   | 40L               | Small verts                               | Straight-to-analysis                                                               | Small vertebrates & molluscs (tufa channel, Column 1)                                                                                                                   |     |
| Bulk-inc<br>Bulk-inc             | ιΩ IΩ          | 40025 $40025$           | 40303<br>40304          | 20L<br>20L        | Small verts<br>Small verts                | Straight-to-analysis<br>Straight-to-analysis                                       | Small vertebrates & molluscs (tufa channel, Column 1)<br>Small vertebrates & molluscs (tufa channel, Column 1)                                                          |     |
|                                  |                |                         |                         |                   |                                           |                                                                                    |                                                                                                                                                                         |     |
| Bulk-inc                         | 6b             | 40144                   | 40305                   | 30L               | Small verts                               | Straight-to-analysis                                                               | Small vertebrates & molluscs (tufa channel, Column 3                                                                                                                    |     |
| Rullz-inc                        | θħ             | 40070                   | 40306                   | 201               | Small verts                               | Straight_to_analyseis                                                              | - eastern offiset)<br>Small vartehrates & mollinees (rinfa channel Column 3                                                                                             |     |
|                                  | 0              |                         |                         |                   |                                           | ormer of manyors                                                                   | - eastern officet)                                                                                                                                                      |     |
| Bulk-inc                         | 6b             | 40070                   | 40307                   | 20L               | Small verts                               | Straight-to-analysis                                                               | Small vertebrates & molluscs (tufa channel, Column 3                                                                                                                    |     |
| Bulk-inc                         | 6b             | 40070                   | 40308                   | 20L               | Small verts                               | Straight-to-analysis                                                               | - castern ouset)<br>Small vertebrates & molluscs (tufa channel, Column 3                                                                                                |     |
| Bulk-inc                         | 6b             | 40070                   | 40309                   | 30L               | Small verts                               | Straight-to-analysis                                                               | - eastern offset)<br>Small vertebrates & molluscs (tufa channel, Column 3                                                                                               |     |
|                                  |                |                         |                         |                   |                                           |                                                                                    | - eastern offset)                                                                                                                                                       |     |
| Spot-sed                         | 96             | 40053                   | 40024                   | 100g              | Ostracods                                 |                                                                                    |                                                                                                                                                                         |     |
| Spot-sed                         | $^{9b}$        | 40053                   | 40025                   | 100g              | Pollen                                    | Prelim assessment July 2004                                                        | 1                                                                                                                                                                       |     |
| Spot-sed                         | 7              | 40023                   | 40006                   | 100g              | Ostracods                                 |                                                                                    |                                                                                                                                                                         |     |
| Spot-sed                         | 7              | 40023                   | 40006                   | 100g              | Pollen                                    | Prelim assessment January 2004                                                     | 1                                                                                                                                                                       |     |
| Spot-sed                         | 6a<br>,        | 40024                   | 40007                   | 100g              | Ostracods                                 | Prelim assessment January 2004                                                     | 1                                                                                                                                                                       |     |
| Spot-sed                         | 6a<br>,        | 40024                   | 40007                   | 100g              | Pollen                                    | Prelim assessment January 2004                                                     |                                                                                                                                                                         |     |
| Spot-sed<br>Spot-sed             | 0a<br>6        | 40059                   | 40707                   | 0.0<br>75.75      | Molluscs<br>Pollen                        | Assessed for <b>NVs &amp; molluscs</b><br>Dralim invastigation Inly 2004 (CThunar) | Small vertebrate material contributes to 2010 analysis                                                                                                                  |     |
| Spot-sed                         | 9              | 40158                   | 40408                   | 75cc              | Pollen                                    | Prelim investigation July 2004 (C Turner)                                          |                                                                                                                                                                         |     |
| Spot-sed                         | 9              | 40158                   | 40409                   | 75cc              | Pollen                                    | Prelim investigation July 2004 (C Turner)                                          |                                                                                                                                                                         |     |

| Table AI.I (         | continu  | ed 5)          |                       |                |                          |                                                                |                                                        |                                         |
|----------------------|----------|----------------|-----------------------|----------------|--------------------------|----------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------|
| Sample<br>type       | Phase    | Context        | Sample<br><no.></no.> | Sample<br>size | Sampled for              | Assessment programme                                           | Analysis Com                                           | mments                                  |
| Spot-sed             | Q        | 40158          | 40410                 | 250cc          | Plant macro<br>remains   | Prelim investigation July 2004 (C Turner) -                    | - Azol<br>amo<br>non-                                  | colla spore;<br>norphous<br>nn-cellular |
| Spot-sed             | 9        | 40078          | 40132                 | 100g           | Pollen                   | Prelim investigation July 2004 (C Turner)                      | orga<br>Countable pollen                               | game deminas                            |
| Spot-sed<br>Snot-sed | 6<br>63  | 40078<br>40039 | 40133<br>40279        | 100g<br>0.51   | Pollen<br>Charred/rotted | Prelim investigation July 2004 (C Turner)<br>1 oct             | Countable pollen<br>-                                  |                                         |
| oportacu             | 00       | COOL           | 61701                 |                | plant remains??          | TOST                                                           |                                                        |                                         |
| Spot-sed             | 2        | 40025          | 40130                 | 100g           | Pollen                   | Prelim investigation July 2004 (C Turner) -                    |                                                        |                                         |
| Spot-sed             | ۲Ū ,     | 40025          | 40131                 | 100g           | Pollen                   | Prelim investigation July 2004 (C Turner) -                    |                                                        |                                         |
| Spot-sed             | 9 9      | 40069          | 40030                 | 100g           | Ustracods<br>Dollon      | -                                                              |                                                        |                                         |
| Spot-sed<br>Spot-sed | 0 0      | 40009<br>40068 | 10004                 | 1000<br>1000   | Pollen                   | -<br>Drelim investiontion Iuly 2004 (C Turner) -               |                                                        |                                         |
| Spot-sed             | 9 9      | 40068          | 40028                 | 100g           | Ostracods                | 1 I UNIT MIVESUBARON JULY 2007 (0 1 MINU) -                    |                                                        |                                         |
| Spot-sed             | 9        | 40068          | 40033                 | 100g           | Ostracods                |                                                                |                                                        |                                         |
| Spot-sed             | 9        | 40068          | 40034                 | 100g           | Pollen                   |                                                                |                                                        |                                         |
| Spot-sed             | 9        | 40068          | 40086                 | 100g           | Ostracods                | Prelim assessment March 2004 -                                 | 1                                                      |                                         |
| Spot-sed             | 6b       | 40143          | 40248                 | 200g           | Ostracods                | Prelim ostracod assessment June 2004;                          | Ostracods present and analysed                         |                                         |
|                      |          |                |                       |                |                          | pollen assessment 2009                                         |                                                        |                                         |
| Spot-sed             | 6b       | 40143          | 40249                 | 200g           | Ostracods                | Prelim ostracod assessment June 2004;                          | Ostracods present and analysed                         |                                         |
| Shot-sed             | бh       | 40143          | 40250                 | 2000           | Ostracods                | Pouch assessment 2003<br>Prelim ostracod assessment Line 2004. | Ostracods present and analysed                         |                                         |
| opor sea             | 8        |                |                       | 0<br>22<br>1   |                          | pollen assessment 2009                                         |                                                        |                                         |
| Spot-sed             | 6b       | 40143          | 40253                 | 1L             | Molluscs                 | Taken away by SA Parfitt                                       | Small vertebrate material contributes to 2010 analysis |                                         |
| Spot-sed             | 6b       | 40143          | 40271                 | 200g           | Ostracods                | Prelim assessment July 2004 -                                  | Ostracods present and analysed                         |                                         |
| Spot-sed             | 6b       | 40070          | 40036                 | 100g           | Ostracods                | 1                                                              |                                                        |                                         |
| Spot-sed             | 6b       | 40070          | 40037                 | 100g           | Pollen                   |                                                                |                                                        |                                         |
| Spot-sed             | 6b       | 40070          | 40038                 | 2L             | Molluscs                 |                                                                |                                                        |                                         |
| Spot-sed             | 6b       | 40070          | 40039                 | 100g           | Ostracods                |                                                                |                                                        |                                         |
| Spot-sed             | 6b       | 40070          | 40087                 | 100g           | Ostracods                | Prelim assessment March 2004 -                                 |                                                        |                                         |
| Spot-sed             | 6b       | 40070          | 40088                 | 100g           | Ostracods                | Prelim assessment March 2004 -                                 |                                                        |                                         |
| Spot-sed             | 6b       | 40070          | 40134-1               | 100g           | Pollen                   | Prelim investigation July 2004 (C Turner) -                    |                                                        |                                         |
| Spot-sed             | 6b       | 40070          | 40134-2               | 25 g           | Plant macro              | 1                                                              |                                                        |                                         |
| Shot-sed             | бħ       | 40070          | 40252                 | 11             | Mollinece                | Taken away by SA Parfitt                                       | Small vertehrate material contributes to 2010 analysis |                                         |
| Spot-sed             | ch<br>dh | 40070          | 40422                 | 1              | Small verts              | tarrest away by bit t attice                                   | Unian verteurate materina contributes to 2010 analysis |                                         |
| Spot-sed             | 6        | 40029          | 40008                 | 100g           | Ostracods                |                                                                |                                                        |                                         |
| Spot-sed             | 9        | 40029          | 40008                 | 100g           | Pollen                   |                                                                |                                                        |                                         |
| Spot-sed             | Ĵ.       | 40025          | 40129                 | 100g           | Pollen                   | Prelim investigation July 2004 (C Turner) -                    | -                                                      |                                         |

| Table AI.I (cc                 | ntinu€ | (9 pə          |                       |                |                       |                                                                                 |                                |          |
|--------------------------------|--------|----------------|-----------------------|----------------|-----------------------|---------------------------------------------------------------------------------|--------------------------------|----------|
| Sample<br>type                 | Phase  | Context        | Sample<br><no.></no.> | Sample<br>size | Sampled for           | Assessment programme                                                            | Analysis                       | Comments |
| Spot-sed<br>Spot-sed           | 900    | 40100<br>40065 | 40257<br>40066        | 10L<br>100g    | Molluscs<br>Ostracods | Assessed for molluscs<br>Ostracod assessment 2009                               |                                |          |
| Spot-sed<br>Spot-sed           | 1 17   | 40059          | 40062<br>40062        | 100g<br>100g   | Pollen<br>Ostracods   | Folien assessment 2009<br>Ostracod assessment 2009                              | 1 1                            |          |
| Spot-sed<br>Spot-sed           |        | 40059 $40057$  | 40063<br>40060        | 100g<br>100g   | Pollen<br>Ostracods   | Pollen assessment 2009<br>Ostracod assessment 2009                              |                                |          |
| Spot-sed                       |        | 40057          | 40061                 | 100g           | Pollen                | Pollen assessment 2009                                                          |                                |          |
| Spot-sed                       | 9      | 40100          | 40256                 | 10L            | Molluscs              | 1                                                                               | 1                              |          |
| Sed-increment<br>Sed-increment | ις ις  | 40025<br>40025 | 40009<br>40009        | 100g<br>100g   | Ostracods<br>Pollen   | Prelim assessment January 2004<br>Prelim assessment January 2004; Re-assessed   | 1 1                            |          |
| Sed-increment                  | Ś      | 40025          | 40010                 | 100g           | Ostracods             | July 2007<br>-                                                                  | 1                              |          |
| Sed-increment                  | 2      | 40025          | 40010                 | 100g           | Pollen                |                                                                                 |                                |          |
| Sed-increment                  | 4      | 40026          | 40011                 | 100g           | Ostracods             | Ostracod assessment 2009                                                        |                                |          |
| Sed-increment                  | 4      | 40026          | 40011                 | 100g           | Pollen                | I                                                                               | 1                              |          |
| Sed-increment<br>Sed-increment | 44     | 40026<br>40026 | 40012<br>40012        | 100g<br>100g   | Ostracods<br>Pollen   | Prelim assessment January 2004 -<br>Prelim assessment January 2004; Re-assessed |                                |          |
| Sed-increment                  | 4      | 40026          | 40013                 | 1000           | Ostracode             | July 2004<br>Ostraciod assessment 2009                                          |                                |          |
| Sed-increment                  | 4      | 40026          | 40013                 | 100g           | Pollen                |                                                                                 | 1                              |          |
| Sed-increment                  | 4      | 40027          | 40014                 | 100g           | Ostracods             | Ostracod assessment 2009                                                        |                                |          |
| Sed-increment                  | 4      | 40027          | 40014                 | 100g           | Pollen                | 1                                                                               |                                |          |
| Sed-increment                  | 4      | 40027          | 40015                 | 100g           | Ostracods             | Prelim assessment January 2004 -                                                | 1                              |          |
| Sed-increment                  | 4      | 40027          | 40015                 | 100g           | Pollen                | Prelim assessment January 2004; Re-assessed<br>July 2004                        | 1                              |          |
| Sed-increment                  | 9      | 40100          | 40366                 | 20L            | Small verts           |                                                                                 |                                |          |
| Sed-increment                  | 9      | 40100          | 40367                 | 20L            | Small verts           | 1                                                                               | 1                              |          |
| Sed-increment                  | 9      | 40078          | 40368                 | 20L            | Small verts           | 1                                                                               |                                |          |
| Sed-increment                  | 9      | 40099          | 40369                 | 20L            | Small verts           |                                                                                 |                                |          |
| Sed-increment                  | 6a     | 40103          | 40370                 | 20L            | Small verts           | 1                                                                               |                                |          |
| Sed-increment                  | 6a     | 40103          | 40371                 | 20L            | Small verts           | 1                                                                               | 1                              |          |
| Sed-increment                  | 6a     | 40039          | 40372                 | 20L            | Small verts           | 1                                                                               | 1                              |          |
| Sed-increment                  | 6b     | 40143          | 40264                 | 200g           | Ostracods             | Prelim assessment July 2004                                                     | Ostracods present and analysed |          |
| Sed-increment                  | 6b     | 40143          | 40265                 | 200g           | Ostracods             | Prelim assessment July 2004                                                     | Ostracods present and analysed |          |
| Sed-increment                  | 6b     | 40143          | 40266                 | 200g           | Ostracods             | Prelim assessment July 2004                                                     | Ostracods present and analysed |          |
| Sed-increment                  | 6b     | 40143          | 40268                 | 200g           | Ostracods             | Prelim assessment July 2004                                                     | Ostracods present and analysed |          |

| Table AI.I (cont               | tinuec   | I 7)           |                       |                |                           |                                                            |                                                                  |         |
|--------------------------------|----------|----------------|-----------------------|----------------|---------------------------|------------------------------------------------------------|------------------------------------------------------------------|---------|
| Sample Ph<br>type              | iase (   | Context        | Sample<br><no.></no.> | Sample<br>size | Sampled for               | Assessment programme                                       | Analysis Con                                                     | omments |
| Sed-increment<br>Sed-increment | 6b<br>6b | 40143<br>40143 | 40269<br>40270        | 200g<br>200g   | Ostracods<br>Ostracods    | Prelim assessment July 2004<br>Prelim assessment July 2004 | Ostracods present and analysed<br>Ostracods present and analysed |         |
|                                |          |                |                       |                |                           |                                                            |                                                                  |         |
| Sed-increment                  | 9        | 40162          | 40398                 | 20L            | Small verts               |                                                            |                                                                  |         |
| Sed-increment                  | 9        | 40162          | 40399                 | 20L            | Small verts               | 1                                                          |                                                                  |         |
| Sed-increment (                | 9        | 40162          | 40400                 | 20L            | Small verts               |                                                            |                                                                  |         |
| Sed-increment (                | 9        | 40162          | 40401                 | 20L            | Small verts               |                                                            |                                                                  |         |
| Sed-increment (                | 9        | 40162          | 40402                 | 20L            | Small verts               |                                                            |                                                                  |         |
| Sed-increment (                | 6a       | 40103          | 40403                 | 20L            | Small verts               |                                                            |                                                                  |         |
| Sed-increment (                | 6a       | 40103          | 40404                 | 20L            | Small verts               |                                                            |                                                                  |         |
| Sed-increment                  | 6a       | 40039          | 40405                 | 20L            | Small verts               | 1                                                          |                                                                  |         |
| Sed-increment (                | 9        | 40162          | 40393                 | 20L            | Small verts               | 1                                                          |                                                                  |         |
| Sed-increment (                | 9        | 40162          | 40394                 | 20L            | Small verts               |                                                            |                                                                  |         |
| Sed-increment (                | 9        | 40162          | 40395                 | 20L            | Small verts               |                                                            |                                                                  |         |
| Sed-increment (                | 9        | 40162          | 40396                 | 20L            | Small verts               |                                                            |                                                                  |         |
| Sed-increment                  | 9        | 40162          | 40397                 | 20L            | Small verts               | 1                                                          |                                                                  |         |
| Sed-increment (                | 9        | 40100          | 40387                 | 20L            | Small verts               |                                                            |                                                                  |         |
| Sed-increment (                | 9        | 40078          | 40388                 | 20L            | Small verts               |                                                            |                                                                  |         |
| Sed-increment (                | 9        | 40078          | 40389                 | 20L            | Small verts               |                                                            |                                                                  |         |
| Sed-increment (                | 9        | 40099          | 40390                 | 20L            | Small verts               | -                                                          |                                                                  |         |
| Sed-increment (                | 9        | 40099          | 40391                 | 20L            | Small verts               |                                                            |                                                                  |         |
| Sed-increment                  | 6a       | 40103          | 40392                 | 20L            | Small verts               | 1                                                          |                                                                  |         |
| Sed-increment (                | 9        | 40100          | 40373                 | 20L            | Small verts               | I                                                          |                                                                  |         |
| Sed-increment (                | 9        | 40100          | 40374                 | 20L            | Small verts               |                                                            |                                                                  |         |
| Sed-increment (                | 9        | 40100          | 40375                 | 20L            | Small verts               | 1                                                          | 1                                                                |         |
| Sed-increment (                | 9        | 40078          | 40376                 | 20L            | Small verts               |                                                            |                                                                  |         |
| Sed-increment (                | 9        | 40078          | 40377                 | 20L            | Small verts               | 1                                                          |                                                                  |         |
| Sed-increment (                | 9        | 40099          | 40378                 | 20L            | Small verts               | 1                                                          | 1                                                                |         |
| Sed-increment                  | 9        | 40099          | 40379                 | 20L            | Small verts               | 1                                                          |                                                                  |         |
| Monolith                       | 6b       | 40070          | 40328                 | 63cm           | Pollen/                   | I                                                          |                                                                  |         |
|                                |          |                |                       |                | micro-pal/                |                                                            |                                                                  |         |
|                                |          |                |                       |                | Soil m-morph              |                                                            |                                                                  |         |
| Monolith                       | 7        | 40043          | 40018                 | 135cm          | Pollen                    |                                                            |                                                                  |         |
| Monolith                       | 6b       | 40143          | 40282                 | 24cm           | Pollen/                   | Assessed for molluscs & ostracods, 2009                    | Molluscs analysed; Small vertebrate material                     |         |
|                                |          |                |                       |                | micro-pal<br>Soil m-morph |                                                            | contributes to 2010 analysis; also, a few ostracods              |         |

Appendix I

| Table AI.I (c  | ontinu∈ | (8 pa   |                       |                |                                       |                                         |                                    |          |
|----------------|---------|---------|-----------------------|----------------|---------------------------------------|-----------------------------------------|------------------------------------|----------|
| Sample<br>type | Phase   | Context | Sample<br><no.></no.> | Sample<br>size | Sampled for                           | Assessment programme                    | Analysis (                         | Comments |
| Monolith       | 6b      | 40070   | 40281                 | 27cm           | Pollen/<br>micro-pal/<br>Soil m-morph | Pollen assessment 2009                  | 1                                  |          |
| Kubiena        | 9       | 40100   | 40229                 |                | Soil m-morph                          | 1                                       | I                                  |          |
| Kubiena        | 9       | 40100   | 40230                 |                | Soil m-morph                          |                                         |                                    |          |
| Kubiena        | 9       | 40100   | 40231                 |                | Soil m-morph                          |                                         | 1                                  |          |
| Kubiena        | 9       | 40099   | 40232                 |                | Soil m-morph                          |                                         |                                    |          |
| Kubiena        | 6a      | 40103   | 40233                 |                | Soil m-morph                          |                                         | 1                                  |          |
| Kubiena        | 6a      | 40039   | 40234                 |                | Soil m-morph                          |                                         |                                    |          |
| Kubiena        | 6a      | 40039   | 40235                 |                | Soil m-morph                          |                                         | 1                                  |          |
| Kubiena        | 6a      | 40040   | 40236                 |                | Soil m-morph                          | 1                                       | 1                                  |          |
| Kubiena        | 6b      | 40070   | 40322                 | 10 cm          | Soil m-morph                          | 1                                       | 1                                  |          |
| Kubiena        | 6a      | 40039   | 40323                 | 12cm           | Soil m-morph                          |                                         | Soil micro-morphology              |          |
| Kubiena        | 9       | 40100   | 40260                 | 1 foil tin     | Soil m-morph                          | 1                                       | 1                                  |          |
|                |         |         |                       | (15 cm)        |                                       |                                         |                                    |          |
| Kubiena        | 9       | 40100   | 40259                 | 1 foil tin     | Soil m-morph                          |                                         |                                    |          |
| 17 1.          | ,       | 00001   |                       | (18cm)         | -<br>F                                |                                         |                                    |          |
| Nuolena        | D       | 40004   | QC704                 | $(17_{cm})$    | Soll m-morph                          |                                         |                                    |          |
| Kuhiena        | Ŷ       | 40100   | 40225                 | 12 cm          | Soil m-mornh                          |                                         | ,                                  |          |
| Kuhiena        | 9       | 40100   | 40226                 | 10cm           | Soil m-morph                          |                                         |                                    |          |
| Kubiena        | 9       | 40039   | 40227                 | 10 cm          | Soil m-morph                          |                                         |                                    |          |
|                |         |         |                       |                |                                       |                                         |                                    |          |
| Mon-inc        | 7       | 40166   | 40418                 | 50cm           | Pollen/                               | Assessed for pollen & ostracods, 2009   | Soil micro-morphology; some pollen |          |
|                |         |         |                       |                | micro-pal/<br>Soil m-mornh            |                                         |                                    |          |
| Mon-inc        | ý       | 40158   | 40419                 | 50cm           | Pollen/                               |                                         |                                    |          |
|                | þ       |         |                       |                | micro-pal/                            |                                         |                                    |          |
|                |         |         |                       |                | Soil m-morph                          |                                         |                                    |          |
| Mon-inc        | 2       | 40043   | 40158                 | 50cm           | Pollen                                | 1                                       |                                    |          |
| Mon-inc        | 6a      | 40040   | 40157                 | 45cm           | Pollen                                | Assessed for molluscs & ostracods, 2009 |                                    |          |
| Mon-inc        | 6a      | 40040   | 40156                 | 45cm           | Pollen                                | Sieved for small vertebrates            |                                    |          |
| Mon-inc        | 5       | 40025   | 40155                 | 45cm           | Pollen                                | Sieved for small vertebrates            |                                    |          |
| Mon-inc        | 2       | 40025   | 40154                 | 45 cm          | Pollen                                | Assessed for ostracods, 2009            |                                    |          |
| Mon-inc        | 4       | 40027   | 40153                 | 50cm           | Pollen                                | Assessed for ostracods, 2009            |                                    |          |

| Table AI.1 | (continu | ed 9)   |                |        |                            |                              |                                                        |          |
|------------|----------|---------|----------------|--------|----------------------------|------------------------------|--------------------------------------------------------|----------|
| Sample     | Phase    | Context | Sample         | Sample | Sampled for                | Assessment programme         | Analysis                                               | Comments |
| type       |          |         | < <i>n</i> 0.> | size   |                            |                              |                                                        |          |
| Mon-inc    | 7        | 40101   | 40148          | 55cm   | Pollen                     |                              |                                                        |          |
| Mon-inc    | 9        | 40100   | 40149          | 50 cm  | Pollen                     | 1                            | Soil micro-morphology                                  |          |
| Mon-inc    | 9        | 40078   | 40150          | 45cm   | Pollen                     | 1                            | Soil micro-morphology                                  |          |
| Mon-inc    | 6a       | 40103   | 40151          | 45cm   | Pollen                     | 1                            | Soil micro-morphology                                  |          |
| Mon-inc    | 6a       | 40039   | 40152          | 50cm   | Pollen                     | -                            |                                                        |          |
| Mon-inc    | 9        | 40099   | 40142          | 45cm   | Pollen                     |                              |                                                        |          |
| Mon-inc    | 9        | 40099   | 40143          | 40cm   | Pollen                     |                              |                                                        |          |
| Mon-inc    | Ŋ        | 40025   | 40144          | 45cm   | Pollen                     | Sieved for small vertebrates |                                                        |          |
| Mon-inc    | 2        | 40025   | 40145          | 45cm   | Pollen                     | Sieved for small vertebrates | Small vertebrate material contributes to 2010 analysis |          |
| Mon-inc    | 2        | 40025   | 40146          | 45cm   | Pollen                     | Sieved for small vertebrates |                                                        |          |
| Mon-inc    | 2        | 40025   | 40147          | 50cm   | Pollen                     | Sieved for small vertebrates |                                                        |          |
| Mon-inc    | 6a       | 40039   | 40135          | 45cm   | Pollen                     |                              |                                                        |          |
| Mon-inc    | ۰2       | 40025   | 40136          | 45cm   | Pollen                     | Sieved for small vertebrates |                                                        |          |
| Mon-inc    | 2        | 40025   | 40137          | 45cm   | Pollen                     | Sieved for small vertebrates |                                                        |          |
| Mon-inc    | 2        | 40025   | 40138          | 45cm   | Pollen                     | Sieved for small vertebrates |                                                        |          |
| Mon-inc    | 2        | 40025   | 40139          | 45cm   | Pollen                     | Sieved for small vertebrates |                                                        |          |
| Mon-inc    | Ŋ        | 40025   | 40140          | 50 cm  | Pollen                     | Sieved for small vertebrates |                                                        |          |
| Mon-inc    | ۰C       | 40025   | 40141          | 60 cm  | Pollen                     | Sieved for small vertebrates |                                                        |          |
| Mon-inc    | 9        | 40100   | 40364          | 55cm   | Pollen/                    | Assessed for pollen, 2009    | Some pollen                                            |          |
|            |          |         |                |        | micro-pal/<br>Soil m-morph |                              |                                                        |          |
| Mon-inc    | 9        | 40078   | 40365          | 55cm   | Pollen/                    | Assessed for pollen, 2009    | Soil micro-morphology                                  |          |
|            |          |         |                |        | micro-pal/                 |                              |                                                        |          |
|            |          |         |                |        | Soil m-morph               |                              |                                                        |          |
| Mon-inc    | 9        | 40100   | 40362          | 54cm   | Pollen/                    |                              | -                                                      |          |
|            |          |         |                |        | micro-pal/                 |                              |                                                        |          |
| Mon-inc    | 9        | 40078   | 40363          | 53cm   | Pollen/                    |                              |                                                        |          |
|            | þ        |         |                |        | micro-pal/                 |                              |                                                        |          |
|            |          |         |                |        | Soil m-morph               |                              |                                                        |          |
| Mon-inc    | 9        | 40099   | 40352          | 58cm   | Pollen/                    | Assessed for pollen, 2009    |                                                        |          |
|            |          |         |                |        | micro-pal/<br>Soil m-mornh |                              |                                                        |          |
| Mon-inc    | 9        | 40099   | 40353          | 54cm   | Pollen/                    | Assessed for pollen, 2009    |                                                        |          |
|            |          |         |                |        | micro-pal/                 | a.                           |                                                        |          |
|            |          |         |                |        | Soll m-morph               |                              |                                                        |          |

| Table AI.I (c      | ontinue | (01 Pa         |                       |                  |                                                       |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|--------------------|---------|----------------|-----------------------|------------------|-------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Sample<br>type     | Phase   | Context        | Sample<br><no.></no.> | Sample<br>size   | Sampled for                                           | Assessment programme                                   | Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Comments |
| Mon-inc            | 9       | 40162          | 40344                 | 67 cm            | Pollen/<br>micro-pal/<br>Soil m-morrh                 | Assessed for pollen, 2009                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| Mon-inc            | 9       | 40162          | 40345                 | 67 cm            | Pollen/<br>micro-pal/                                 | Assessed for pollen, 2009                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| Mon-inc            | 9       | 40162          | 40340                 | 75cm             | Soil m-morph<br>Pollen/<br>micro-pal/                 | Assessed for pollen, 2009                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| Mon-inc            | 9       | 40162          | 40341                 | 75cm             | Soul m-morph<br>Pollen/<br>micro-bal/                 |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Mon-inc            | Q       | 40162          | 40342                 | 75 cm            | Pollen/<br>Pollen/<br>micro-pal/<br>Soil m-morph      | Assessed for pollen, 2009                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| Mon-inc            | 9       | 40078          | 40321                 | 40cm             | Pollen/<br>micro-pal/                                 | Assessed for pollen, molluscs & ostracods, 2009        | Molluscs analysed; also, a few ostracods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| Mon-inc            | 6a      | 40103          | 40326                 | 50cm             | Soil m-morph<br>Pollen/<br>micro-pal/<br>Soil m-morph | Assessed for molluscs & ostracods, 2009                | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| Mon-inc            | 2       | 40067          | 40072                 | 75cm             | Pollen                                                |                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| Mon-inc            | 2       | 40066          | 40071                 | 65 cm            | Pollen                                                | 1                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| Mon-inc            | 2       | 40066          | 40070                 | 70cm             | Pollen                                                |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Mon-inc<br>Mon-inc | ν       | 40066<br>40062 | 40069<br>40068        | 55cm<br>50cm     | Pollen<br>Pollen                                      | -<br>Assessed for molluscs & ostracods, 2009           | -<br>Ostracods present and analysed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
|                    | 2       | 10100          | 10106                 |                  | n-11                                                  |                                                        | 0.11 - 11 - 01 - 11 - 01 - 11 - 01 - 11 - 01 - 11 - 01 - 11 - 01 - 11 - 01 - 11 - 01 - 11 - 01 - 11 - 01 - 11 - 01 - 11 - 01 - 11 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 00 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 00 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01 - |          |
| Mon inc            | 0 4     | 40100          | 40190                 | E Common         | Pollen                                                | Assessed for pollen, 2009                              | Soil micro-morphology<br>Soil micro mouthology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| Mon-inc<br>Mon-inc | 0 0     | 40100          | 40104                 | 50cm             | Pollen                                                | Assessed for pollen, 2009<br>Accessed for nollar, 2000 | Soil micro-morphology<br>Soil micro-morphology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| Mon-inc            | 0       | 40100          | 40193                 | 50cm             | Pollen                                                | Assessed for pollen, 2009                              | Soil micro-morphology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
| Mon-inc            | 9       | 40039          | 40192                 | 50 cm            | Pollen                                                | Sieved for small vertebrates                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Mon-inc            | Ŋ       | 40025          | 40191                 | 45 cm            | Pollen                                                | Sieved for small vertebrates                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| Mon-inc            | 5       | 40025          | 40189                 | 55cm             | Pollen                                                | Sieved for small vertebrates                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Mon-inc            | Ŋ       | 40025          | 40188                 | $55 \mathrm{cm}$ | Pollen                                                | Sieved for small vertebrates                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Mon-inc            | Ĵ.      | 40025          | 40187                 | 55cm             | Pollen                                                | Sieved for small vertebrates                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |

486

| Table AI.I (c  | ontinu€ | (II pa  |                       |                |             |                                       |                       |          |
|----------------|---------|---------|-----------------------|----------------|-------------|---------------------------------------|-----------------------|----------|
| Sample<br>type | Phase   | Context | Sample<br><no.></no.> | Sample<br>size | Sampled for | Assessment programme                  | Analysis              | Comments |
| Mon-inc        | ý       | 40068   | 40113                 | 55cm           | Pollen      |                                       |                       |          |
| Mon-inc        | 9       | 40068   | 40112                 | 55cm           | Pollen      |                                       |                       |          |
| Mon-inc        | 9       | 40068   | 40111                 | 55cm           | Pollen      |                                       |                       |          |
| Mon-inc        | 9       | 40068   | 40110                 | 55cm           | Pollen      |                                       |                       |          |
| Mon-inc        | 9       | 40068   | 40109                 | 55cm           | Pollen      |                                       |                       |          |
| Mon-inc        | 9       | 40068   | 40108                 | 55cm           | Pollen      | 1                                     |                       |          |
| Mon-inc        | 9       | 40068   | 40102                 | 60cm           | Pollen      |                                       |                       |          |
| Mon-inc        | Ŋ       | 40067   | 40103                 | 45cm           | Pollen      |                                       |                       |          |
| Mon-inc        | 2       | 40066   | 40104                 | 55cm           | Pollen      | Sieved for small vertebrates          |                       |          |
| Mon-inc        | 2       | 40066   | 40105                 | 65cm           | Pollen      | Sieved for small vertebrates          |                       |          |
| Mon-inc        | 2       | 40066   | 40106                 | 60cm           | Pollen      | Sieved for small vertebrates          | I                     |          |
| Mon-inc        | 2       | 40066   | 40107                 | 55cm           | Pollen      | Sieved for small vertebrates          |                       |          |
| Mon-inc        | 7       | 40065   | 40095                 | 45cm           | Pollen      | Assessed for pollen & ostracods, 2009 |                       |          |
| Mon-inc        | 0       | 40065   | 40079                 | 55cm           | Pollen      | Assessed for pollen, 2009             |                       |          |
| Mon-inc        | 7       | 40065   | 40078                 | 60cm           | Pollen      | Assessed for pollen & ostracods, 2009 | ı                     |          |
| Mon-inc        | 7       | 40065   | 40077                 | 55 cm          | Pollen      | 1                                     | 1                     |          |
| Mon-inc        | 7       | 40065   | 40076                 | 65cm           | Pollen      | Assessed for pollen & ostracods, 2009 | ı                     |          |
| Mon-inc        | 7       | 40064   | 40075                 | 50 cm          | Pollen      |                                       |                       |          |
| Mon-inc        | 7       | 40064   | 40074                 | 50 cm          | Pollen      |                                       |                       |          |
| Mon-inc        | 7       | 40064   | 40073                 | 60cm           | Pollen      | Assessed for pollen & ostracods, 2009 |                       |          |
| Mon-inc        | 7       | 40064   | 40099                 | 57cm           | Pollen      | 1                                     |                       |          |
| Mon-inc        | 7       | 40064   | 40098                 | 55 cm          | Pollen      | Assessed for pollen & ostracods, 2009 |                       |          |
| Mon-inc        | 7       | 40064   | 40097                 | 50 cm          | Pollen      | Assessed for pollen & ostracods, 2009 | 1                     |          |
| Mon-inc        | 7       | 40064   | 40096                 | 63cm           | Pollen      | Assessed for pollen & ostracods, 2009 | 1                     |          |
| Mon-inc        | 1       | 40059   | 40094                 | 50cm           | Pollen      | Assessed for pollen, 2009             |                       |          |
| Mon-inc        | 1       | 40059   | 40093                 | 45cm           | Pollen      | Assessed for pollen, 2009             | 1                     |          |
| Mon-inc        | 1       | 40059   | 40092                 | 50 cm          | Pollen      | Assessed for pollen, 2009             |                       |          |
| Mon-inc        | 1       | 40058   | 40085                 | 50 cm          | Pollen      | Assessed for pollen, 2009             | 1                     |          |
| Mon-inc        | 1       | 40058   | 40084                 | 55 cm          | Pollen      | Assessed for pollen, 2009             | 1                     |          |
| Mon-inc        | 1       | 40058   | 40083                 | 65cm           | Pollen      | Assessed for pollen, 2009             |                       |          |
| Mon-inc        | 1       | 40058   | 40082                 | 50 cm          | Pollen      | Assessed for pollen, 2009             | Soil micro-morphology |          |
| Mon-inc        | 1       | 40057   | 40081                 | 60cm           | Pollen      | Assessed for pollen, 2009             |                       |          |
| Mon-inc        | 1       | 40056   | 40080                 | 60cm           | Pollen      |                                       |                       |          |
| Mon-inc        | 1       | 40056   | 40089                 | 50cm           | Pollen      | -                                     |                       |          |

| Table AI.I (co     | ntinue   | d 12)          |                       |                |                   |                                |           |              |
|--------------------|----------|----------------|-----------------------|----------------|-------------------|--------------------------------|-----------|--------------|
| Sample<br>type     | Phase    | Context        | Sample<br><no.></no.> | Sample<br>size | Sampled for       | Assessment programme           | Analysis  | Comments     |
| Mon-inc<br>Mon-inc |          | 40056<br>40056 | 40090<br>40091        | 50cm<br>60cm   | Pollen<br>Pollen  | 1 1                            | 1 1       |              |
|                    |          |                |                       |                |                   |                                |           |              |
| <b>OSL</b> -tube   | 9b       | 40087          | 40254                 |                | OSL dating        |                                | 1st batch |              |
| <b>OSL</b> -tube   | 9a       | 40051          | 40056                 |                | <b>OSL</b> dating |                                | 1st batch |              |
| OSL-tube           | 8c       | 40049          | 40057                 |                | OSL dating        |                                | 1st batch |              |
| OSL -tube          | 8h       | 40047          | 40058                 |                | OSI, dating       |                                |           |              |
| OSI -tube          | 000      | 40098          | 40244                 |                | OSI dating        |                                | 2nd hatch |              |
| OSI -tribe         | s ox     | 40008          | 40245                 |                | OSI dating        |                                |           |              |
| OSL-tube           | 8a<br>8a | 40045          | 40243                 |                | OSL dating        | 1                              |           |              |
| <b>OSL</b> -tube   | 6b       | 40144          | 40247                 |                | OSL dating        | Assessed for molluscan remains |           | Assessed for |
|                    |          |                |                       |                |                   |                                |           | molluscan    |
| OSL-tube           | 6b       | 40070          | 40246                 |                | OSL dating        | 1                              |           | гонцаниз     |
| OSL-tube           | 6b       | 40070          | 40255                 |                | OSL dating        |                                |           |              |
| <b>OSL</b> -tube   | ŝ        | 40163          | 40354                 |                | OSL dating        |                                |           |              |
| <b>OSL</b> -tube   | 2        | 40163          | 40355                 |                | OSL dating        |                                |           |              |
| OSL-tube           | Ĵ.       | 40066          | 40052                 |                | OSL dating        |                                |           |              |
| OSL-tube           | 5        | 40066          | 40053                 |                | OSL dating        |                                | 2nd batch |              |
| <b>OSL-tube</b>    | 2        | 40066          | 40054                 |                | OSL dating        | 1                              | 1         |              |
| <b>OSL-</b> tube   | 2        | 40066          | 40358                 |                | OSL dating        | 1                              | 1         |              |
| OSL-tube           | 5        | 40066          | 40359                 |                | OSL dating        | ı                              | 1         |              |
| OSL-tube           | Ĵ.       | 40163          | 40356                 |                | OSL dating        | 1                              |           |              |
| OSL-tube           | 2        | 40163          | 40357                 |                | OSL dating        |                                |           |              |
| OSL-tube           | 0        | 40065          | 40047                 |                | OSL dating        |                                |           |              |
| OSL-tube           | 7        | 40065          | 40048                 |                | OSL dating        |                                |           |              |
| <b>OSL</b> -tube   | 0        | 40064          | 40049                 |                | <b>OSL</b> dating | -                              |           |              |
| OSL-tube           | 0        | 40060          | 40051                 |                | OSL dating        |                                |           |              |
| OSL-tube           | 1        | 40056          | 40050                 |                | OSL dating        | 1                              | I         |              |
| Other              | 8c       | 40018          | 40016                 | na             | Clast             |                                |           |              |
|                    |          |                |                       |                | orientation stud  | y                              |           |              |
| Other              | 8c       | 40018          | 40017                 | na             | Clast             |                                |           |              |
|                    |          |                |                       |                | orientation stud  | y                              |           |              |
| Other              | 6b       | 40070          | 40421                 | ć:             | Molluscs          |                                |           |              |
| Other              | 9        | 40078          | 40240                 | ć:             | Wood species II   | - 0                            |           |              |
| Other              | 9        | 40100          | 40190                 | ćć             | Wood species II   | 0                              | -         |              |
|                    |          |                |                       |                | Assessed 2009     |                                |           |              |

# Loss-on-ignition and magnetic susceptibility of the sedimentary sequences at Southfleet Road

by John Crowther

#### INTRODUCTION

Loss-on-ignition (LOI) and low frequency mass-specific magnetic susceptibility  $(\chi)$  determinations were made on 105 bulk samples from the sediments at Southfleet Road in the hope that they might provide evidence of possible soils/land surfaces within the sequences of deposits. As the sediments accumulated, it would be anticipated that former soils/land surfaces would have had a relatively high organic matter content (as estimated by LOI) as a result of plant growth and inputs of organic litter. An enhanced magnetic susceptibility would also be expected as a consequence of natural fermentation processes within soils (Le Borgne, 1955). It should be noted, however, that both properties may have been significantly affected by post-depositional processes. Organic matter content is likely to have diminished as a result of decomposition processes, and magnetic susceptibility may have been affected by the mobilisation (through gleying), leaching and reprecipitation of iron (Fe) compounds as a result of waterlogging. Also,  $\chi$  is affected both by the degree enhancement and the Fe content and where (as is likely to be the case in these sedimentary sequences) the latter is quite variable then  $\chi$  may poorly reflect the levels of enhancement. The LOI and  $\gamma$  data do therefore need to be interpreted with caution.

#### METHODS

Analysis was undertaken on the fine earth fraction (ie < 2mm) of the samples. LOI was determined by ignition at 375°C for 16hrs (Ball 1964), previous studies having established that there is no significant breakdown of carbonates at this temperature. In addition to  $\chi$ , determinations were made of  $\chi_{max}$  (maximum potential magnetic susceptibility, which generally closely reflects

Table A2.1 Summary statistics for all samples

the Fe content) on 20 samples, representative of the range of  $\chi$  values recorded, by subjecting a sample to optimum conditions for susceptibility enhancement in the laboratory.  $\chi_{conv}$  (fractional conversion), which is expressed as a percentage, is a measure of the extent to which the potential susceptibility has been achieved in the original sample, viz:  $(\chi/\chi_{max}) \times 100.0$  (Tite 1972; Scollar et al. 1990). In many respects this is a better indicator of magnetic susceptibility enhancement than raw  $\chi$  data, particularly in cases where sediments have widely differing  $\chi_{max}$  values (Crowther and Barker 1995; Crowther 2003). A Bartington MS2 meter was used for magnetic susceptibility measurements.  $\chi_{\text{max}}$  was achieved by heating samples at 650°C in reducing, followed by oxidising conditions. The method used broadly follows that of Tite and Mullins (1971), except that household flour was mixed with the soils and lids placed on the crucibles to create the reducing environment (after Graham and Scollar 1976; Crowther and Barker 1995).

#### **RESULTS** (Tables A2.1-A2.6)

The analytical data are presented in Table A2.6, summary statistics relating to samples form particular contexts and sequences in Tables A2.1–A2.5, a plot of the fractional conversion data in Fig. A2.1, and plots of variations in LOI and  $\chi$  down individual sediment sequences in Figs. A2.2–2.3. Here, a broad overview of the individual properties is presented, before consideration of the results from individual contexts and sequences.

#### Overview of individual properties

**1.** *Loss-on-ignition*. The samples are predominantly minerogenic (Table A2.1), with 99 of the 105 samples

|                                                                  | No. | Minimum | Maximum | Mean | Std dev |  |
|------------------------------------------------------------------|-----|---------|---------|------|---------|--|
|                                                                  |     |         |         |      |         |  |
| LOI (%)                                                          | 105 | 0.375   | 6.69    | 1.88 | 0.776   |  |
| $\chi (10^{-8} \text{ m}^3 \text{ kg}^{-1})$                     | 105 | 2.0     | 27.4    | 10.7 | 4.48    |  |
| $\chi_{max}$ (10 <sup>-8</sup> m <sup>3</sup> kg <sup>-1</sup> ) | 20  | 22.0    | 7390.0  | 1230 | 2030    |  |
| $\chi_{\rm conv}$ (%)                                            | 20  | 0.08    | 37.7    | 6.60 | 10.1    |  |



Figure A2.1. Plot of  $\chi$  against  $\chi_{\text{conv}}$  for 20 representative samples

having a LOI < 3.00%. Of the remaining samples, only one sample from context 40158 stands out as having a notably higher LOI of 6.69%. Because of post-depositional organic decomposition, these data inevitably underestimate and may well poorly reflect the original organic matter content of the sediments. It should also be noted that a number of samples which appeared (by virtue of their darker colour) to be more organic, did not necessarily have relatively high LOI values. The samples were found to vary quite markedly in texture and, while there is unlikely to be any breakdown of clays at the temperature (375°C) used for ignition, it is possible that some of the variability in organic matter content may be directly related to texture in that finer sediments are more likely to contain more resistant clay-humus complexes and will tend to be less well aerated and therefore less vulnerable to decomposition. It would be interesting to investigate whether there is an underlying correlation between LOI and texture.

Table A2.2 Summary of LOI (%) data for each context

2. Magnetic susceptibility. The most striking feature of the magnetic susceptibility data is the extremely high variability in  $\chi_{max}$  with values ranging from 22.0–7390 x 10<sup>-8</sup> m<sup>3</sup> kg<sup>-1</sup> (Table A2.1). Given this exceptionally high variability, and the relatively low variability in  $\chi$ (range,  $2.0-27.4 \times 10^{-8} \text{ m}^3 \text{ kg}^{-1}$ ), it is highly unlikely that there will be a strong relationship between  $\chi$  and  $\chi_{conv}$ (Crowther 2003), and this is borne out by Fig. A2.1. Furthermore, since such variability in  $\chi_{max}$  is likely to be largely attributable to variations in Fe content, which in these sedimentary sequences could well have been subject to post-depositional change through gleying and associated leaching/reprecipitation, the  $\chi$  and  $\chi_{max}$  data may poorly reflect the characteristics of the sediments at the time of deposition. Thus, little reliance can be placed on the magnetic susceptibility data - with samples with a high  $\chi_{conv}$  (maximum, 37.7%) not necessarily being indicative of significant enhancement in the original sediments. In these circumstances, the  $\chi$ data need to be interpreted with extreme caution.

|       | No. | Minimum | Maximum | Mean  | Std dev |  |
|-------|-----|---------|---------|-------|---------|--|
| 40025 | 5   | 0.375   | 0.844   | 0.530 | 0.187   |  |
| 40039 | 11  | 1.18    | 3.04    | 1.68  | 0.538   |  |
| 40040 | 4   | 0.511   | 1.98    | 1.18  | 0.605   |  |
| 40043 |     | 0.912   | 1.44    | 1.18  | 0.373   |  |
| 40056 | 5   | 1.39    | 1.91    | 1.62  | 0.188   |  |
| 40057 | 7   | 1.18    | 1.55    | 1.37  | 0.136   |  |
| 40058 | 3   | 0.972   | 1.09    | 1.05  | 0.065   |  |
| 40070 | 1   | 3.23    | 3.23    | 3.23  | -       |  |
| 40078 | 7   | 2.02    | 2.30    | 2.17  | 0.087   |  |
| 40099 | 6   | 1.95    | 2.35    | 2.15  | 0.164   |  |
| 40100 | 20  | 1.21    | 2.36    | 1.87  | 0.254   |  |
| 40103 | 8   | 0.820   | 3.19    | 2.38  | 0.753   |  |
| 40158 | 5   | 1.75    | 6.69    | 3.49  | 1.87    |  |
| 40160 | 2   | 0.946   | 1.03    | 0.988 | 0.059   |  |
| 40162 | 18  | 1.78    | 2.52    | 2.19  | 0.176   |  |
| 40166 | 1   | 1.38    | 1.38    | 1.38  | -       |  |

# Comparison of different contexts

**1.** Loss-on-ignition. Many of the individual contexts display quite marked variability in LOI (Table A2.2). Of the 10 contexts for which  $\geq$  5 samples were analysed, three have a standard deviations of  $\geq$  0.500%, which are

high for contexts with such low mean LOI values. Heterogeneity of this magnitude within individual contexts suggests that significant changes in environmental conditions occurred as each context developed, with the more organic-rich samples being likely associated with periods of soil development/surface exposure.

Table A2.3 Summary of  $\chi(10^{-8} \text{ m}^3 \text{ kg}^{-1})$  data for each context

|       | No. | Minimum | Maximum | Mean | Std dev |
|-------|-----|---------|---------|------|---------|
|       |     |         |         |      |         |
| 40025 | 5   | 2.9     | 5.1     | 3.9  | 0.873   |
| 40039 | 11  | 6.6     | 14.3    | 9.1  | 2.79    |
| 40040 | 4   | 3.0     | 9.6     | 6.6  | 2.74    |
| 40043 | 2   | 7.6     | 9.3     | 8.5  | 1.20    |
| 40056 | 5   | 19.5    | 21.7    | 20.6 | 0.887   |
| 40057 | 7   | 14.7    | 21.6    | 19.2 | 2.34    |
| 40058 | 3   | 15.9    | 27.4    | 19.7 | 6.64    |
| 40070 | 1   | 12.3    | 12.3    | 12.3 | -       |
| 40078 | 7   | 9.0     | 10.4    | 9.8  | 0.544   |
| 40099 | 6   | 9.2     | 12.5    | 10.9 | 1.48    |
| 40100 | 20  | 8.1     | 12.3    | 10.0 | 0.851   |
| 40103 | 8   | 2.0     | 13.9    | 10.4 | 3.82    |
| 40158 | 5   | 7.6     | 10.0    | 8.8  | 0.950   |
| 40160 | 2   | 4.8     | 4.9     | 4.9  | 0.071   |
| 40162 | 18  | 7.7     | 10.4    | 9.4  | 0.775   |
| 40166 | 1   | 8.3     | 8.3     | 8.3  | -       |

#### Table A2.4 Summary of LOI (%) data for each sequence

|     | No. | Minimum | Maximum | Mean | Std dev |
|-----|-----|---------|---------|------|---------|
| 1   | 5   | 0.912   | 1.98    | 1.47 | 0.453   |
| 2   | 10  | 0.511   | 6.69    | 2.24 | 1.83    |
| 3   | 23  | 0.375   | 3.19    | 1.76 | 0.809   |
| 4   | 20  | 1.21    | 2.36    | 1.82 | 0.287   |
| 5   | 4   | 0.82    | 3.23    | 1.70 | 1.06    |
| 6   | 7   | 1.89    | 2.46    | 2.19 | 0.199   |
| 7.1 | 5   | 1.78    | 2.52    | 2.18 | 0.276   |
| 7.2 | 4   | 2.13    | 2.42    | 2.30 | 0.132   |
| 7.3 | 7   | 2.06    | 2.27    | 2.17 | 0.084   |
| 7.4 | 5   | 1.93    | 3.07    | 2.43 | 0.412   |
| 8.1 | 5   | 0.972   | 1.37    | 1.14 | 0.149   |
| 8.2 | 10  | 1.23    | 1.91    | 1.51 | 0.193   |

Table A2.5 Summary of  $\chi(10^{-8} \text{ m}^3 \text{ kg}^{-1})$  data for each sequence

|     | No. | Minimum | Maximum | Mean | Std dev |  |
|-----|-----|---------|---------|------|---------|--|
| 1   | 5   | 6.5     | 9.6     | 8.3  | 1.27    |  |
| 2   | 10  | 3.0     | 10.0    | 7.2  | 2.26    |  |
| 3   | 23  | 2.9     | 14.3    | 8.9  | 3.39    |  |
| 4   | 20  | 7.0     | 12.3    | 9.8  | 1.15    |  |
| 5   | 4   | 2.0     | 12.3    | 7.5  | 4.29    |  |
| 6   | 7   | 9.3     | 12.5    | 11.3 | 1.37    |  |
| 7.1 | 5   | 7.7     | 9.6     | 8.8  | 0.783   |  |
| 7.2 | 4   | 8.7     | 10.1    | 9.6  | 0.638   |  |
| 7.3 | 7   | 8.9     | 10.4    | 9.9  | 0.516   |  |
| 7.4 | 5   | 8.3     | 11.8    | 9.8  | 1.31    |  |
| 8.1 | 5   | 14.7    | 27.4    | 18.4 | 5.18    |  |
| 8.2 | 10  | 19.2    | 21.7    | 20.5 | 0.972   |  |

Table A2.6 Analytical data

| Sequence | e Sample | Depth (cm      | ) Seauence   | Context | LOI                 | γ                       | γ                       | γ                        |
|----------|----------|----------------|--------------|---------|---------------------|-------------------------|-------------------------|--------------------------|
|          |          | _ · [ ( )      | depth (cm)   | (rev)   | (%)                 | $(10^{-8} m^3 kg^{-1})$ | $(10^{-8} m^3 kg^{-1})$ | $(10^{-8} m^3 k g^{-1})$ |
|          |          |                |              | ()      | (19)                | (                       | (                       | (11                      |
| 1        | 40158    | 7-8            | 7.5          | 40043   | 0.912               | 7.6                     |                         |                          |
| 1        | 40158    | 17-18          | 17.5         | 40043   | 1.44                | 9.3                     |                         |                          |
| 1        | 40158    | 27-28          | 27.5         | 40039   | 1.85                | 8.4                     |                         |                          |
| 1        | 40158    | 37-38          | 37.5         | 40040   | 1.98                | 9.6                     | 2200                    | 0.44                     |
| 1        | 40158    | 46-47          | 46.5         | 40040   | 1.15                | 6.5                     |                         |                          |
| 2        | 40418    | 2-3            | 2.5          | 40166   | 1.38                | 8.3                     |                         |                          |
| 2        | 40418    | 12-13          | 12.5         | 40158   | 6.69                | 8.2                     | 81                      | 10.1                     |
| 2        | 40418    | 25-26          | 25.5         | 40158   | 1.75                | 7.6                     |                         |                          |
| 2        | 40418    | 36-37          | 36.5         | 40160   | 1.03                | 4.9                     | 6310                    | 0.08                     |
| 2        | 40418    | 44-45          | 44.5         | 40158   | 3.12                | 10.0                    |                         |                          |
| 2        | 40419    | 4-5            | 49           | 40160   | 0.946               | 4.8                     |                         |                          |
| 2        | 40419    | 11-12          | 56           | 40158   | 2.81                | 8.7                     | 454                     | 1.92                     |
| 2        | 40419    | 21-22          | 66           | 40158   | 3.10                | 9.4                     |                         |                          |
| 2        | 40419    | 31-32          | 76           | 40040   | 1.09                | 7.3                     |                         |                          |
| 2        | 40419    | 42-43          | 87           | 40040   | 0.511               | 3.0                     | 2080                    | 0.14                     |
| 3        | 40148    | 4-5            | 4.5          | 40100   | 1.76                | 10.0                    |                         |                          |
| 3        | 40148    | 11-12          | 11.5         | 40100   | 2.11                | 10.3                    |                         |                          |
| 3        | 40148    | 21-22          | 21.5         | 40078   | 2.30                | 10.3                    |                         |                          |
| 3        | 40148    | 30-31          | 30.5         | 40078   | 2.23                | 10.4                    |                         |                          |
| 3        | 40148    | 43-44          | 43.5         | 40078   | 2.13                | 10.1                    |                         |                          |
| 3        | 40149    | 15-16          | 40.5         | 40078   | 2.14                | 9.8                     |                         |                          |
| 3        | 40149    | 22-23          | 47.5         | 40078   | 2.17                | 9.0                     |                         |                          |
| 3        | 40149    | 32-33          | 57.5         | 40078   | 2.17                | 9.2                     |                         |                          |
| 3        | 40149    | 44-45          | 69.5         | 40099   | 2.06                | 9.3                     |                         |                          |
| 3        | 40150    | 7-8            | 77.5         | 40099   | 1.95                | 9.2                     |                         |                          |
| 3        | 40150    | 17-18          | 87.5         | 40099   | 2.01                | 10.4                    |                         |                          |
| 3        | 40150    | 32-33          | 102.5        | 40103   | 3 19                | 13.8                    |                         |                          |
| 3        | 40150    | 42-43          | 112.5        | 40103   | 2.76                | 13.0                    |                         |                          |
| 3        | 40151    | 8-9            | 112.5        | 40039   | 3.04                | 14.3                    |                         |                          |
| 3        | 40151    | 17-18          | 120          | 40030   | 1.63                | 14.0                    |                         |                          |
| 3        | 40151    | 24-25          | 120          | 40030   | 1.05                | 7 3                     |                         |                          |
| 3        | 40151    | 34-35          | 137          | 40039   | 1.70                | 7.6                     |                         |                          |
| 3        | 40151    | 44-45          | 147          | 40039   | 1.51                | 6.6                     |                         |                          |
| 3        | 40152    | 8-0            | 148 5        | 40025   | 0.403               | 3.5                     | 1610                    | 0.22                     |
| 3        | 40152    | 15-16          | 155 5        | 40025   | 0.499               | 5.1                     | 1010                    | 0.22                     |
| 3        | 40152    | 24-25          | 164.5        | 40025   | 0.534               | 4.5                     |                         |                          |
| 3        | 40152    | 33-34          | 173.5        | 40025   | 0.405               | 3.6                     |                         |                          |
| 3        | 40152    | 13 11          | 183.5        | 40025   | 0.405               | 2.0                     | 300                     | 0.73                     |
| J<br>4   | 40102    | 45             | 4.5          | 40025   | 2.36                | 10.7                    | 599                     | 0.15                     |
| 4        | 40190    | 14.15          | 4.5          | 40100   | 2.00                | 10.7                    |                         |                          |
| 4        | 40190    | 24.25          | 24.5         | 40100   | 2.01                | 10.1                    |                         |                          |
| 4        | 40190    | 24-25          | 24.5         | 40100   | 1.84                | 0.0                     |                         |                          |
| 4        | 40190    | 44 45          | J4.J<br>44.5 | 40100   | 1.64                | 9.9                     |                         |                          |
| -т<br>Л  | 40190    | 44-40<br>67    | 44.)<br>11   | 40100   | 1.09                | 10.0                    |                         |                          |
| 4        | 40195    | 16.17          | 44<br>54     | 40100   | 1.04                | 10.2                    |                         |                          |
| 4        | 40195    | 10-17          | 54           | 40100   | 2.05                | 0.1                     |                         |                          |
| 4        | 40195    | 20-21          | 74           | 40100   | 2.05                | 10.2                    |                         |                          |
| 4        | 40195    | 30-37          | 74<br>94     | 40100   | 2.03                | 10.5                    |                         |                          |
| 4        | 40195    | 40-47          | 04           | 40100   | 2.02                | 9.0                     |                         |                          |
| 4        | 40194    | 0-7            | 81.5         | 40100   | 1.12<br>Not compled | 10.5                    |                         |                          |
| 4        | 40194    | 9-10           | 01 5         | 40100   | Not sampled         | 10.2                    |                         |                          |
| 4        | 40194    | 10-17          | 91.3         | 40100   | 1.70                | 12.3                    |                         |                          |
| 4        | 40194    | 20-27          | 101.3        | 40100   | 1.02                | 9.5                     |                         |                          |
| 4        | 40194    | 20-31<br>AG AT | 111.0        | 40100   | 1.70                | 9.4                     |                         |                          |
| 4        | 40194    | 40-47          | 121.5        | 40100   | 1.99                | 10.5                    |                         |                          |
| 4        | 40193    | 7-8            | 122.5        | 40100   | 1.82                | 9.4                     |                         |                          |
| 4        | 40193    | 17-18          | 132.5        | 40100   | 1.62                | 9.0                     |                         |                          |
| 4        | 40193    | 27-28          | 142.5        | 40100   | 2.01                | 9.4                     |                         |                          |
| 4        | 40193    | 37-38          | 152.5        | 40039   | 1.73                | 8.2                     | ( = 0                   | 1.05                     |
| 4        | 40193    | 47-48          | 162.5        | 40039   | 1.21                | 7.0                     | 652                     | 1.07                     |
| 5        | 40322    | 4-5            | 4.5          | 40070   | 3.23                | 12.3                    | 7390                    | 0.17                     |

Table A2.6 (continued)

| Sequence | e Sample | Depth (cm) | ) Sequence<br>depth (cm) | Context<br>(rev) | LOI<br>(%) | $\chi$ (10 <sup>-8</sup> $m^3 kg^{-1}$ ) | χ <sub>max</sub><br>(10-8 m <sup>3</sup> kg <sup>-1</sup> ) | X <sub>conv (%)</sub><br>(10 <sup>-8</sup> m <sup>3</sup> kg <sup>-1</sup> ) |
|----------|----------|------------|--------------------------|------------------|------------|------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------|
|          |          |            |                          |                  | 0.00       | (11                                      | (                                                           |                                                                              |
| 5        | 40322    | 11-12      | 11.5                     | 40103            | 0.82       | 2.0                                      | 97                                                          | 2.06                                                                         |
| 5        | 40323    | 2-3        | 22.5                     | 40039            | 1.45       | 8.7                                      |                                                             |                                                                              |
| 5        | 40323    | 11-12      | 31.5                     | 40039            | 1.28       | 6.8                                      |                                                             |                                                                              |
| 6        | 40365    | 4-5        | 4.5                      | 40078            | 2.02       | 9.5                                      |                                                             |                                                                              |
| 6        | 40365    | 9-10       | 9.5                      | 40099            | 2.22       | 12.5                                     |                                                             |                                                                              |
| 6        | 40365    | 15-16      | 15.5                     | 40099            | 2.30       | 12.4                                     |                                                             |                                                                              |
| 6        | 40365    | 23-24      | 23.5                     | 40099            | 2.35       | 11.6                                     |                                                             |                                                                              |
| 6        | 40365    | 30-31      | 30.5                     | 40103            | 1.89       | 9.3                                      |                                                             |                                                                              |
| 6        | 40365    | 40-41      | 40.5                     | 40103            | 2.46       | 12.4                                     |                                                             |                                                                              |
| 6        | 40365    | 50-51      | 50.5                     | 40039            | 2.11       | 11.1                                     | 455                                                         | 2.44                                                                         |
| 7.1      | 40344    | 9-10       | 9.5                      | 40162            | 2.30       | 9.4                                      |                                                             |                                                                              |
| 7.1      | 40344    | 24-25      | 24.5                     | 40162            | 1.78       | 7.7                                      |                                                             |                                                                              |
| 7.1      | 40344    | 29-30      | 29.5                     | 40162            | 2.52       | 9.6                                      |                                                             |                                                                              |
| 7.1      | 40344    | 43-44      | 43.5                     | 40162            | 2.24       | 8.8                                      |                                                             |                                                                              |
| 7.1      | 40344    | 55-56      | 55.5                     | 40162            | 2.07       | 8.3                                      | 22                                                          | 37.7                                                                         |
| 7.2      | 40345    | 4-5        | 4.5                      | 40162            | 2.25       | 8.7                                      |                                                             |                                                                              |
| 7.2      | 40345    | 11-12      | 11.5                     | 40162            | 2.42       | 10.1                                     |                                                             |                                                                              |
| 7.2      | 40345    | 43-44      | 43.5                     | 40162            | 2.38       | 10.0                                     |                                                             |                                                                              |
| 7.2      | 40345    | 55-56      | 55.5                     | 40162            | 2.13       | 9.6                                      |                                                             |                                                                              |
| 7.3      | 40340    | 7-8        | 7.5                      | 40162            | 2.27       | 10.2                                     |                                                             |                                                                              |
| 7.3      | 40340    | 17-18      | 17.5                     | 40162            | 2.08       | 10.4                                     |                                                             |                                                                              |
| 7.3      | 40340    | 27-28      | 27.5                     | 40162            | 2.12       | 10.2                                     |                                                             |                                                                              |
| 7.3      | 40340    | 37-38      | 37.5                     | 40162            | 2.06       | 10.0                                     |                                                             |                                                                              |
| 7.3      | 40340    | 47-48      | 47.5                     | 40162            | 2.20       | 9.5                                      | 31                                                          | 30.7                                                                         |
| 7.3      | 40340    | 57-58      | 57.5                     | 40162            | 2.26       | 9.8                                      |                                                             |                                                                              |
| 7.3      | 40340    | 67-68      | 67.5                     | 40162            | 2.19       | 8.9                                      |                                                             |                                                                              |
| 7.4      | 40342    | 6-7        | 6.5                      | 40162            | 2.29       | 9.1                                      |                                                             |                                                                              |
| 7.4      | 40342    | 18-19      | 18.5                     | 40162            | 1.93       | 8.3                                      |                                                             |                                                                              |
| 7.4      | 40342    | 38-39      | 38.5                     | 40103            | 2.43       | 10.2                                     |                                                             |                                                                              |
| 7.4      | 40342    | 54-55      | 54.5                     | 40103            | 2.45       | 9.8                                      |                                                             |                                                                              |
| 7.4      | 40342    | 70-71      | 70.5                     | 40103            | 3.07       | 11.8                                     |                                                             |                                                                              |
| 8.1      | 40082    | 8-9        | 8.5                      | 40058            | 0.972      | 15.9                                     |                                                             |                                                                              |
| 8.1      | 40082    | 18-19      | 18.5                     | 40058            | 1.09       | 27.4                                     | 1000                                                        | 2.74                                                                         |
| 8.1      | 40082    | 28-29      | 28.5                     | 40058            | 1.08       | 15.9                                     |                                                             |                                                                              |
| 8.1      | 40082    | 38-39      | 38.5                     | 40057            | 1.18       | 14.7                                     | 348                                                         | 4.22                                                                         |
| 8.1      | 40082    | 51-52      | 51.5                     | 40057            | 1.37       | 18.2                                     | 373                                                         | 4.88                                                                         |
| 8.2      | 40081    | 5-6        | 5.5                      | 40057            | 1.36       | 19.2                                     |                                                             |                                                                              |
| 8.2      | 40081    | 8-9        | 8.5                      | 40057            | 1.23       | 19.6                                     |                                                             |                                                                              |
| 8.2      | 40081    | 15-16      | 15.5                     | 40057            | 1.52       | 19.7                                     |                                                             |                                                                              |
| 8.2      | 40081    | 18-19      | 18.5                     | 40057            | 1.35       | 21.6                                     | 239                                                         | 9.04                                                                         |
| 8.2      | 40081    | 25-26      | 25.5                     | 40057            | 1.55       | 21.5                                     | 270                                                         | 7.96                                                                         |
| 8.2      | 40081    | 28-29      | 28.5                     | 40056            | 1.39       | 21.7                                     | 255                                                         | 8.51                                                                         |
| 8.2      | 40081    | 35-36      | 35.5                     | 40056            | 1.62       | 21.2                                     | 311                                                         | 6.82                                                                         |
| 8.2      | 40081    | 38-39      | 38.5                     | 40056            | 1.56       | 20.5                                     |                                                             |                                                                              |
| 8.2      | 40081    | 45-46      | 45.5                     | 40056            | 1.91       | 20.0                                     |                                                             |                                                                              |
| 8.2      | 40081    | 48-49      | 48.5                     | 40056            | 1.64       | 19.5                                     |                                                             |                                                                              |
|          |          |            |                          |                  |            |                                          |                                                             |                                                                              |

The extreme case is context 40158 (std dev., 1.87%), for which individual LOI values range from 1.75–6.69%. Allowing for post-depositional organic decomposition, then it seems likely that the most organic rich of these samples is from a sediment that was originally very humic (possibly peaty) in composition. Other contexts, by comparison, are much more uniform in terms of LOI (e.g. the 18 samples from context 40162 have a range of 1.78–2.52%), and in these cases there is therefore less evidence for changing environmental conditions as the sediments were deposited. In addition to within-context variability, there are also differences in mean LOI between the contexts. Clearly, care needs to be exercised when comparing mean values based on small numbers of samples. Of the contexts with  $\geq$  5 samples, the mean values range from 0.530% (40025) to 3.49% (40158). Such differences probably reflect significant differences in the sedimentary environment at the time of deposition, with those contexts with a higher mean LOI being most likely to be associated with periods of soil development/surface exposure.

2. Magnetic susceptibility. As with LOI, the  $\chi$  data display quite marked within- and, in this case particularly between-context, variability (Table A2.3). For example, contexts 40056 and 40057 stand out as having relatively high mean  $\chi$  values (20.6 and 19.2 x 10<sup>-8</sup> m<sup>3</sup> kg<sup>-1</sup>, respectively), whereas the remaining contexts for which  $\geq 5$  samples were analysed have means of  $\leq 10.9 \times 10^{-8} \text{ m}^3 \text{ kg}^{-1}$ , with a minimum of 3.9 x 10<sup>-8</sup> m<sup>3</sup> kg<sup>-1</sup> (40025). As noted above, these data do need to be interpreted with caution because of the difficulties of distinguishing between enhancement through organic fermentation processes and the effects of Fe content, the latter of which may well have been subject to post-depositional change.

#### Comparison of different sequences

Summary LOI and  $\chi$  data for each of the sequences are presented in Tables A2.4 and A2.5, respectively. Since many of the sequences include samples from more than one context, there is inevitably both within- and betweensequence variability in the data sets. Of potentially greater interest are the patterns of variation down individual sedimentary sequences, and these are presented in Figs. A2.2–A2.13. Interestingly, despite the serious reservations concerning the interpretation of the  $\chi$  data, in several of the sequences there is a very close correlation between  $\chi$ and LOI. This is particularly well illustrated by Sequence



Figure A2.2 Variations in LOI (%) and  $\chi(10^{-8} \text{ m}^3 \text{ kg}^{-1} \text{ down Sequence I})$ 



Figure A2.3 Variations in LOI (%) and  $\chi(10^{-8}~m^3~kg^{-1})$  down Sequence 2

3 (Fig. A2.4), and in cases like this, where  $\chi$  supports the LOI evidence, the  $\chi$  data are perhaps more likely to reflect the degree of enhancement. Clearly, the detailed patterns will need to be examined in light of other evidence (colour, texture, composition, etc.). However, principal points to emerge from the LOI and  $\chi$  plots are as follows (all depths refer to sequence depth):

**Sequence 1** (Fig. A2.2): Generally higher LOI at 27.5–37.5cm, though not especially high (maximum, 1.98%). Sample at 37.5cm (context 40040) would appear from LOI and  $\chi$  to be more similar to sample at 27.5cm (context 40039) than the underlying sample from context 40040.



Figure A2.4 Variations in LOI (%) and  $\chi(10^{-8} \text{ m}^3 \text{ kg}^{-1})$  down Sequence 3



Figure A2.5 Variations in LOI (%) and  $\chi(10^{-8} \text{ m}^3 \text{ kg}^{-1})$  down Sequence 4

Sequence 2 (Fig. A2.3): The higher LOI and, to some extent,  $\chi$  values are associated with interdigitated context 40158, with only the sample at 25.5cm within this context having a notably lower LOI (1.75%). The very high peak in LOI at 12.5cm (6.69%) is almost certainly associated with soil (possibly peat?) formation, and the secondary peaks at 44.5 and 56–66cm also seem likely to be associated with periods of soil development/ surface exposure.

**Sequence** 3 (Fig. A2.4): Clear peak in LOI and  $\chi$  at 102.5–111cm (i.e. context 40103) which is likely to be

associated with soil development/surface exposure. Sediments become increasingly minerogenic towards base of sequence (contexts 40039 and, especially, 40025).

Sequence 4 (Fig. A2.5): Context 40100, which extends down to c 145cm, displays mostly relatively minor variations in LOI, with several possible minor peaks (at 4.5, 24.5, 64–74, 84, 121.5 and 142.5cm) and one sample (at 54cm) showing a notably lower LOI (1.21%). Several of the peaks in LOI correspond with peaks in  $\chi$ .



Figure A2.6 Variations in LOI (%) and  $\chi(10^{-8} \text{ m}^3 \text{ kg}^{-1})$  down Sequence 5



Figure A2.7 Variations in LOI (%) and  $\chi(10^{-8} \text{ m}^3 \text{ kg}^{-1})$  down Sequence 6

**Sequence 5** (Fig. A2.6): This sequence reveals a close correlation between LOI and  $\chi$ , and a clear distinction between context 40070, which has a higher LOI and  $\chi$ , and the underlying contexts (40103 and 40039).

**Sequence 6** (Fig. A2.7): This sequence also reveals a close correlation between LOI and  $\chi$ , with both showing a minor peak towards the base of context 40103 (at 40.5cm).

**Sequence** 7.1 (Fig. A2.8): A single context (40162) showing a close correlation between LOI and  $\chi$ , with both showing a minor peak at 29.5cm.

**Sequence 7.2** (Fig. A2.9): A single context (40162) showing a close correlation between LOI and  $\chi$ , though the range of variation down the sequence is relatively small.

**Sequence 7.3** (Fig. A2.10): A single context (40162) showing a possible minor peak in LOI and  $\chi$  at 57.5cm, though the range of variation down the sequence is relatively small.

**Sequence** 7.4 (Fig. A2.11): A close correlation between LOI and  $\chi$ , and, though the range of variation down the sequence is relatively small, the lower context (40103)



Figure A2.8 Variations in LOI (%) and  $\chi(10^{-8}~m^3~kg^{-1})$  down Sequence 7.1



Figure A2.9 Variations in LOI (%) and  $\chi(10^{-8}~m^3~kg^{-1})$  down Sequence 7.2

has a somewhat higher LOI and  $\chi$  than the upper (40162).

Sequence 8.1 (Fig. A2.12): A general increase in LOI down the section from context 40058 to 40057, and a

notably high  $\chi$  (27.4 x 10<sup>-8</sup> m<sup>3</sup> kg<sup>-1</sup>) at 18.5cm. It should be noted that the latter sample has a relatively high  $\chi_{max}$  (1000 x 10<sup>-8</sup> m<sup>3</sup> kg<sup>-1</sup>) and needs therefore to be interpreted with caution – ie the higher  $\chi$  may well simply reflect a higher Fe content.



Figure A2.10 Variations in LOI (%) and  $\chi(10^{-8} \text{ m}^3 \text{ kg}^{-1})$  down Sequence 7.3; [horizontal scales do not start at 0.0 (ie plots exaggerate differences between samples]



Figure A2.11 Variations in LOI (%) and  $\chi(10^{-8} \text{ m}^3 \text{ kg}^{-1})$  down Sequence 7.4

Sequence 8.2 (Fig. A2.13): A general increase in LOI down the section from context 40057 to 40056, with a possible minor peak at 45.5cm in context 40056. The peak in  $\chi$  shown in the plot is relatively small and is unlikely to be of significance.

## **CONCLUSIONS AND RECOMMENDATIONS**

As noted in the introduction, LOI and  $\chi$  data from these sequences may well poorly reflect the character of the

initial sediments, because of likely post-depositional organic decomposition and mobilisation of Fe. As the investigations of the relationship between  $\chi$  and  $\chi_{conv}$  have shown, interpretation of the  $\chi$  data is further complicated by what would appear to be wide variations in Fe content through the sequences of deposits. Nonetheless, the results have revealed quite marked variability both within and between contexts. One major peak in LOI (probably the remains of a humic or even peaty deposit) has been identified in context 40158 (Sequence 2), which is very likely to be associated with



Figure A2.12 Variations in LOI (%) and  $\chi(10^{-8} \text{ m}^3 \text{ kg}^{-1})$  down Sequence 8.1



Figure A2.13 Variations in LOI (%) and  $\chi(10^{-8} \text{ m}^3 \text{ kg}^{-1})$  down Sequence 8.2 [horizontal scale for  $\chi$  does not start at 0.0 (ie plot exaggerates differences between samples)]

a significant period of soil development/surface exposure. Elsewhere, various minor peaks in LOI have been identified, which may also be indicative of periods of soil development/surface exposure, particularly where there is a close correlation with  $\chi$ .

It is recommended that the present data are examined in the light of other field and post-excavation evidence – eg textural and compositional variations (which may affect both LOI and  $\chi$ ), and the results of thin section investigations.

# **Diatom assessment of samples from Southfleet Road**

by Nigel Cameron

## INTRODUCTION

The aim of the diatom assessment was to evaluate the potential to use diatom analysis of the Southfleet Road sediments for environmental reconstruction and in particular to determine the types of aquatic environment in which the sediments were deposited.

A total of 32 samples for diatom assessment were subsampled from monolith and bulk sediment samples taken from the Lower Palaeolithic site at Southfleet Road, Ebbsfleet (Wenban-Smith 2009; Wenban-Smith *et al.* 2006) The sample details are listed below (Table A3.1) along with the laboratory diatom sample number that each sample was given at UCL. Note in particular that the order of groups of diatom sample numbers does not follow the order in which sediment samples are listed in the original sample tables supplied by F. Wenban-Smith, B. Silva and E. Stafford. The order of the diatom sample numbers was determined by the priority for assessment of the samples and the order in which groups of samples arrived. In addition, samples of lower priority are listed as possible samples for diatom evaluation in the table, however, sediments for some these were not sent for diatom analysis (Diatom sample number recorded here as 'none'). Further, there is no diatom sample 'D25' because the sub-sample from Sample 40340, 12-13cm was not sent for analysis (see Table 1. Samples assessed for diatoms from the site at Southfleet Road).

Table A3.1 Samples/sub-samples selected for diatom assessment

| Diatom Sample No. | Source sample/sub-sample <> | Context | Phase |  |
|-------------------|-----------------------------|---------|-------|--|
| D1                | 40250/D                     | 40143   | 6b    |  |
| D2                | 40249/D                     | 40143   | 6b    |  |
| D3                | 40248/D                     | 40143   | 6b    |  |
| D4                | 40281/D/nn-nn               | 40070   | 6b    |  |
| D5                | 40281/D/nn-nn               | 40070   | 6b    |  |
| D6                | 40281/D/nn-nn               | 40103   | 6a    |  |
| D7                | 40364/D/6-7cm               | 40100   | 6d    |  |
| D8                | 40364/D/33-34cm             | 40078   | 6d    |  |
| D9                | 40364/D/52-53cm             | 40099   | 6c    |  |
| D10               | 40365/A/0-1cm               | 40078   | 6d    |  |
| D11               | 40365/D/29-30cm             | 40103   | 6a    |  |
| D12               | 40068/D/10-12cm             | 40066   | 5     |  |
| D13               | 40068/D/44-46cm             | 40063   | 3     |  |
| D14               | 40068/D/50-52cm             | 40062   | 3     |  |
| D15               | 40068/D/56-58cm             | 40062   | 3     |  |
| D16               | 40342/D/3-4                 | 40162   | 6     |  |
| D17               | 40352/D/3-4                 | 40100   | 6     |  |
| D18               | 40352/D/51-52               | 40099   | 6     |  |
| D19               | 40352/D/18-19               | 40099   | 6     |  |
| D20               | 40353/D/36-37               | 40099   | 6     |  |
| D21               | 40321/D/5-6cm               | 40144   | 6b    |  |
| D22               | 40321/D/14-15cm             | 40144   | 6b    |  |
| D23               | 40321/D/23-24cm             | 40144   | 6b    |  |
| D24               | 40321/D/44-45cm             | 40103   | 6a    |  |
| D26               | 40340/D/39-40cm             | 40162   | 6c    |  |
| D27               | 40342/D/48-49cm             | 40103   | 6a    |  |
| D28               | 40344/D/9-10cm              | 40162   | 6c    |  |
| D29               | 40344/D/39-40cm             | 40162   | 6c    |  |
| D30               | 40344/D/60-61cm             | 40162   | 6c    |  |
| D31               | 40345/D/12-13cm             | 40162   | 6c    |  |
| D32               | 40345/D/48-49cm             | 40162   | 6c    |  |
| D33               | 40353/D/9-10cm              | 40099   | 6c    |  |

| Diatom<br>Sample | Diatoms<br>assemblage | Diatom<br>numbers | Quality of Div<br>preservation | versity | Assemblage<br>type | Potential for<br>% count |
|------------------|-----------------------|-------------------|--------------------------------|---------|--------------------|--------------------------|
| D1               | absent                | _                 | -                              | -       | -                  | none                     |
| D2               | see text              | one fragment      | extremely poor                 | -       | unknown            | none                     |
| D3               | absent                | -                 | -                              | -       | -                  | none                     |
| D4               | absent                | -                 | -                              | -       | -                  | none                     |
| D5               | absent                | -                 | -                              | -       | -                  | none                     |
| D6               | absent                | -                 | -                              | -       | -                  | none                     |
| D7               | absent                | -                 | -                              | -       | -                  | none                     |
| D8               | absent                | -                 | -                              | -       | -                  | none                     |
| D9               | absent                | -                 | -                              | -       | -                  | none                     |
| D10              | absent                | -                 | -                              | -       | -                  | none                     |
| D11              | absent                | -                 | -                              | -       | -                  | none                     |
| D12              | absent                | -                 | -                              | -       | -                  | none                     |
| D13              | absent                | -                 | -                              | -       | -                  | none                     |
| D14              | absent                | -                 | -                              | -       | -                  | none                     |
| D15              | absent                | -                 | -                              | -       | -                  | none                     |
| D16              | absent                | -                 | -                              | -       | -                  | none                     |
| D17              | absent                | -                 | -                              | -       | -                  | none                     |
| D18              | absent                | -                 | -                              | -       | -                  | none                     |
| D19              | absent                | -                 | -                              | -       | -                  | none                     |
| D20              | absent                | -                 | -                              | -       | -                  | none                     |
| D21              | absent                | -                 | -                              | -       | -                  | none                     |
| D22              | absent                | -                 | -                              | -       | -                  | none                     |
| D23              | absent                | -                 | -                              | -       | -                  | none                     |
| D24              | absent                | -                 | -                              | -       | -                  | none                     |
| D26              | absent                | -                 | -                              | -       | -                  | none                     |
| D27              | absent                | -                 | -                              | -       | -                  | none                     |
| D28              | absent                | -                 | -                              | -       | -                  | none                     |
| D29              | absent                | -                 | -                              | -       | -                  | none                     |
| D30              | absent                | -                 | -                              | -       | -                  | none                     |
| D31              | absent                | -                 | -                              | -       | -                  | none                     |
| D32              | absent                | -                 | -                              | -       | -                  | none                     |
| D33              | absent                | -                 | -                              | -       | -                  | none                     |

Table A3.2 Summary of diatom evaluation results for Southfleet Road

#### **METHODS**

Diatom preparation followed standard techniques (Battarbee 1986, Battarbee *et al.* 2001). Two coverslips of different concentrations were made from each sample and fixed in Naphrax for diatom microscopy. A large area of the coverslips on each slide was scanned for diatoms at magnifications of x200, x400 and x1000 under phase contrast illumination.

## **RESULTS AND DISCUSSION**

The results of the diatom evaluation are shown in Table A3.2. A single, small striate fragment from an indeterminate pennate diatom species was recorded in D2. Diatom assemblages were absent from all thirty-two samples. It is not therefore possible to comment on the aquatic environments in which these sediments were deposited.

Given the ubiquity of diatoms in natural water bodies, the absence of their remains from waterlain sediments is likely to be the result of taphonomic processes rather than absence of diatoms from the water. In particular this can be the result of silica dissolution caused by factors such as high sediment alkalinity, the under-saturation of sediment pore water with dissolved silica, cycles of prolonged drying and rehydration, exposure of sediment to the air or the rapid accumulation of flood deposits (eg, Flower 1993; Ryves *et al.* 2001). However, these factors do not preclude the preservation of diatoms. Unfortunately because of the absence of diatoms here it is not possible to comment further on the nature of sediment deposition or changes in water quality.

#### CONCLUSIONS

Diatoms assemblages were absent from all thirty-two samples. The loss of diatom assemblages from these deposits may have been the result of one or more taphonomic factors leading to diatom valve breakage and silica dissolution, and consequently there is no further potential for diatom analysis of these samples.

# Appendix 4

# Plant macrofossils and wood charcoal

by Denise Druce and Francis Wenban-Smith

#### INTRODUCTION

Visible fragments of what looked like soft, black remnants of plant material or wood were ubiquitous in contexts 40078, 40158 and 40167, as well as occurring as occasional sparse patches in contexts 40039, 40068 and 40100. Samples from 40158 were taken and processed for charcoal and plant macrofossil remains in conjunction with those taken for pollen analysis (Chapter 12) and assessment of insect remains (Appendix 5). Nothing woody was found during the insect assessment, but a megaspore of the water fern Azolla filiculoides was found during sieving before pollen analysis. No other identifiable plant remains were recovered, merely some amorphous non-cellular organic detritus. Four samples were specifically collected with charcoal and wood remains analysis in mind, focusing on patches found during excavation that were thought to be charcoal-rich (Table A4.1).

#### ASSESSMENT

Unfortunately, of these four samples, all except one was misplaced once taken off-site, so the only sample investigated was <40203>. It produced a very sandy flot. A couple of very small charcoal pieces (<2mm) were picked out, as well as several pieces of black vitrified material which looked plant-derived, although poorly preserved. Several more pieces of this black material were recovered from the heavy residue. This organic material was thought possibly suitable for radiocarbon dating. There was much modern root material in the flot, so there is a possibility that the small quantity of charcoal which was present may be from more recent contamination. Considering the possibility of modern intrusion, balanced against the significance of any wood identification, it was therefore decided to proceed with identification of the wood remains and also to carry out radiocarbon dating to establish whether or not they were likely to be of Pleistocene origin.

#### RESULTS

The majority of charcoal fragments from <40203> were highly comminuted and measured less than 0.5mm. A few, however, were large enough to warrant a reasonably clear transverse section. Six fragments were identified as coniferous wood; however, they were too small to enable positive identification to species level. The flot also contained modern plant remains and rare molluscan remains, as well as common heat-affected vesicular material, which probably equates to the indeterminate organic material observed during the initial assessment and also the sieving of samples <40407>-<40410> carried out during pollen analysis. Given the presence of the coniferous wood in the sample, it is tempting to interpret this material as the remains of burnt resin; however this is by no means conclusive.

#### DISCUSSION

The identified wood charcoal could represent any of the native British and northern European coniferous woods, which includes yew *Taxus baccata*, pine *Pinus* sylvestris, silver fir *Abies alba*, and spruce *Picea abies*. All four have been recorded in middle Pleistocene deposits at Clacton-on-Sea (Bridgland *et al.* 1999), and both pine and yew pollen have been recorded in early-to-mid Holocene deposits from other sites in the

 Table A4.1
 Samples taken for charcoal/plant macro-fossil assessment

| Sample<br>No. | Context | Phase | Weight/volume<br>collected | Collection notes                                                                            |
|---------------|---------|-------|----------------------------|---------------------------------------------------------------------------------------------|
| 40190         | 40100   | 6     | Unrecorded                 | Wood remains in clay between Trenches B and C                                               |
| 40240         | 40078   | 6     | Unrecorded                 | A piece of degraded wood within clay 40078 near Palaeoloxodon spread                        |
| 40203         | 40068   | 6     | c 10L                      | A small patch of charcoal-rich clay identified during machining between<br>Trenches B and C |
| 40279         | 40039   | ба    | 0.5L                       | Fragments of charcoal (?) found within 40039 near rhino maxilla group $\Delta.42477$        |

Thames Valley including Ebbsfleet HS1 and STDR4.

Although the sample of coniferous charcoal from sample <40203> was sent to the Scottish Universities

Environmental Research Centre AMS Facility for dating, unfortunately the sampled failed due to insufficient carbon yield (GU-24990).

# Assessment of samples for insect remains

by Russell Coope

#### INTRODUCTION

Although the majority of the sediments at the site did not appear especially promising for insect preservation, the darker brown, more organic-rich brecciated clay of contexts 40158 and 40162 (in the central part of the site, near the elephant skeleton) did appear to have some potential for insect preservation, particularly in light of the confirmed pollen preservation, the presence of rotted plant material and the suggestion (see Chapter 5) that the sediment would previously have been more 'peaty' in nature. Therefore three samples were selected for assessment for insect remains.

#### **METHODS**

Half of each sample was washed over a 300µm sieve, and any resulting residue dried and examined.

## **RESULTS AND CONCLUSIONS**

No vestige of insect remains, or indeed any other floral or faunal remains, was found from any of the samples investigated, listed below.

| Table AJ. I Samples/sub-samples selected for misect assessment | Table A5.1 | Samples/sub-sam | ples selected | for insect | assessment |
|----------------------------------------------------------------|------------|-----------------|---------------|------------|------------|
|----------------------------------------------------------------|------------|-----------------|---------------|------------|------------|

| Sample No. | Context | Phase | No. of boxes | Weight processed |  |
|------------|---------|-------|--------------|------------------|--|
| 40263      | 40158   | 6     | 1 - 10L      | 11.5kg           |  |
| 40413      | 40158   | 6     | 1 - 10L      | 11kg             |  |
| 40346      | 40162   | 6     | 1 - 10L      | 12kg             |  |

# Samples selected for assessment

The three samples selected are listed below (Table A5.1). Two (samples <40263> and <40413>) came from context 40158, the very dark brown brecciated clay rich in fragmentary organic material that formed the full thickness of the Phase 6 sequence at the foot of the synclinal 'skateboard ramp', in the central part of the site, south of Trench B. The third (sample <40346>) came from context 40162, a slightly browner and sandier facies within the lower part of the Phase 6 clay in the central part of the site. This deposit was considered possibly to have some organic preservation.

#### Sample <40346>

Sample consisted of grey clay with lighter patches. Many 'rootlets' but no seeds, insects or molluscs.

#### Sample <40263>

Sample consisted of dark brown clay. Nothing retained on the sieve.

#### Sample <40413>

Sample consisted of dark brown clay. Nothing retained on the sieve.

# Appendix 6

# Worked flint post-excavation analysis methods

by Francis Wenban-Smith

#### INTRODUCTION

The underlying philosophy of the post-excavation lithic analysis was to categorise the artefacts on a technological basis as neutrally as possible, identifying categories such as: core; debitage; flake-tool; and core-tool. This was supplemented by a restricted range of qualitative and quantitative data that it was anticipated would contribute to analysis of the collection. There is a danger in lithic analysis of indiscriminate recording of an overabundance of superfluous empirical data. This analysis was undertaken with a number of clear objectives in mind, and the recording was focused upon data that were chosen as relevant to these objectives, which were: investigation of knapping strategies and primary technological pathways; tool typology; and investigation of the organisational structure of lithic production and the chaîne opératoire.

These data, recorded at the post-excavation stage of analysis, were then combined with site provenance and locational data recorded during excavation to provide the basis for the overall lithic analytical project.

# THE LITHIC COLLECTION

The lithic collection was initially divided into two primary groups, each of which subject to fundamentally different approaches to excavation, recording and analysis, namely: (1) artefacts  $\geq 20$  mm maximum length; and (2) microdebitage < 20mm long. During the excavation, it was not specifically decided to omit recovery and recording of artefacts < 20mm long, but it is certain that the majority of artefacts this size would not have been recovered by the trowelling and mattocking methods applied (Chapter 3), although a few were recovered. Furthermore, it was thought that artefacts of this small size would not usually have been deliberately made in this early period (in contrast, for instance, with the Mesolithic or Neolithic), so there was less value in spending time studying them in detail. However, analysis of the quantity and distribution of microdebitage is of interpretive value in investigating taphonomy and disturbance, so part of the excavation was focused upon a systematic recovery of microdebitage in a selection of the evaluation trenches south of Trench D, by the collection of sediment samples on site that were subsequently sieved through a fine mesh.

## Lithic artefacts ( $\geq$ 20mm)

Artefacts  $\geq$  20mm maximum length were subject to detailed recording, in six distinct data groups:

- Recording referencing
- Packing/storage information
- Site provenance information
- Categorical lithic data
- Quantitative lithic data
- Notes

The details of different data recorded in each of these groups are given below:

#### Microdebitage (< 20mm)

The microdebitage was divided into two categories: 'chips' and 'spalls'. They are not included in the more detailed technological and typological analyses. There is, however, useful information on the integrity and post-depositional disturbance of an assemblage from: (a) their relative quantities in relation to each other and larger debitage; and (b) their spatial distribution in relation to larger debitage. For ease and consistency of comparison, artefacts <20mm maximum dimension were put through stacked 4mm and 2mm sieves, and those retained in the 4mm sieve were recorded as chips, and those in the 2mm sieve were recorded as spalls.

Comparative data from experimental knapping and sites that are confidently believed to represent complete undisturbed knapping scatters then give a baseline for identifying complete and undisturbed debitage distributions.

#### **RECORDED DATA**

There were six main groups of data for artefacts  $\geq$ 20mm, each of which associated with a range of information to be recorded (Table A6.1), described in turn below. The data were recorded by hand onto a paper recording proforma. This took the form of a landscape format A4 paper sheet with columns for each piece of data to be recorded and 20 blank rows for different artefacts on each sheet. After recording, the paper record was typed into an Excel spreadsheet, which could then be linked with the digital survey data

| Type of data         | Name       | Description                                                                               |
|----------------------|------------|-------------------------------------------------------------------------------------------|
| Recording reference  | Rec sht    | Recording sheet, in number order of recording                                             |
|                      | Sht #      | Line number on recording sheet                                                            |
| Packing/storage      | OA box no. | Box number as originally received                                                         |
| Site provenance data | ΔID        | Unique lithic identifier, small find number                                               |
|                      | Context    | Taken from finds bag, cross-checked with paper archive                                    |
|                      | Area       | Area of site: Trenches A-D; Transects 1-3, Strips A-D                                     |
|                      | Trench     | Evaluation trenches I-XV                                                                  |
|                      | Sample <>  | Sample number, for lithic bulk spit-sieved samples                                        |
|                      | Spit       | Spit-number, for lithics from spits in evaluation trenches I-XV                           |
| Categorical data     | Cnd        | Condition                                                                                 |
|                      | C1         | Main technological category                                                               |
|                      | C2         | Secondary technological category                                                          |
|                      | T1         | Technology/typology, sub-category 1 (varies acc. C1, C2)                                  |
|                      | T2         | Technology/typology, sub-category 2 (varies acc. C1, C2)                                  |
|                      | T3         | Technology/typology, sub-category 3 (handaxes, flake-tools)                               |
|                      | T4         | Technology/typology, sub-category 3 (handaxes, flake-tools)                               |
|                      | WhL        | Completeness, wholeness (varies acc C1, C2)                                               |
| Quantitative data    | %Cx        | Percentage remnant cortex, on dorsal surface of flakes                                    |
|                      | DSC        | Dorsal scar count, scars from debitage estimated as ≥20mm [not including striking         |
|                      |            | platform, for flakes]                                                                     |
|                      | ML         | Maximum length, measured along ventral surface for flakes from point of percussion, mm *1 |
|                      | MW         | Maximum width mm, orthogonal to $ML^{*1}$                                                 |
|                      | MT         | Maximum thickness mm, orthogonal to ML                                                    |
|                      | WtG        | Weight grammes                                                                            |
| Notes                | N          | Notes, not usually entered on database but useful on paper record                         |

| <b>T</b> I I A / I | 1 1 1 1 |            | 1.          | r .       |
|--------------------|---------|------------|-------------|-----------|
| Table A6 I         | Lithic  | analysis   | recording   | proforma  |
| 140107 (011        |         | ana 1/ 010 | 1 CCCI anig | protornia |

<sup>\*1</sup> ML, MW for debitage — estimate extra for damage/abrasion <20 mm

thus providing the potential to generate site plans and statistics based on the lithic interpretations.

#### Recording reference

Each sheet was numbered incrementally as it was used, and each row on each sheet (representing separate artefacts) was also numbered from 1-20 down the sheet. Once this data was entered into the digital record alongside the provenance and lithic analytical data, it meant that it was then easy at a later point to go back and investigate the original paper record for any particular artefact. Without this procedure, this would have been a virtually impossible task considering the original paper archive constituted 134 sheets, since the artefacts were not examined in a particular order, other than the context order in which they were provided originally.

# Packing/storage

A record was made during the lithic analysis of the box that material was received in. Lithic artefacts were initially put back into the same box they came from after the first examination. This original packing order gradually became more muddled, as it became clear that several artefacts were initially incorrectly numbered or attributed to the wrong context, leading to them being correctly attributed and placed in different boxes. Maintenance of this record of where artefacts were being stored was useful while study was taking place. Later, the material was entirely reorganised to match significant stratigraphic groupings, so this part of the record became redundant.

## Site provenance data

Provenance data is usually collected on site and before analysis, and stored in a separate database, before being added later to the analysis data, but there has to be a key field to link the two such as  $\Delta$ .ID (individual lithic ID) or <SN> (Sample number, eg. for artefact collections from large sieving programmes). At Southfleet Road, stratigraphic provenance and 3-D spatial location data were collected during excavation for the great majority of flint artefacts. A few were recovered from bulk spit-sieve samples, or from excavated spoil of known stratigraphic provenance but uncertain precise location, so did not have full XYZ locational data. The XYZ data was collected digitally using a total survey station, tied in with the artefact find number. The stratigraphic provenance data was collected manually, with the context number (and, if applicable, site area, trench number and spit/sample number) written on the plastic bag into which lithic finds

were placed, together with the unique individual find number. This was supplemented by maintenance of a paper find register, which listed the finds numbers used, the stratigraphic context of each find along with notes on the location of the find and its material (at Southfleet Road, almost invariably 'Flint' or 'Bone').

When the artefacts were examined, the provenance information written on the finds bag was recorded on the paper lithic recording proforma. This was subsequently cross-checked with the paper record (which was typed up separately into a different Excel spreadsheet) and any discrepancies investigated and resolved. Six different aspects of provenance were recorded, as specified in the proforma (Table A6.1).

#### Categorical data

The first categorical attribute recorded was the condition of each artefact, 'Cnd', which was classified as

one of five different degrees of damage/abrasion (Table A6.2), ranging from absolutely mint condition, as freshly knapped, to so heavily abraded that virtually a beach pebble. The next two attributes, C1 and C2, relates to the technological category. Seven basic technological categories were recognised (Table A6.3), represented by C1, ranging from natural unworked flint (C1=0) to artefacts interpreted as tools (C1=6). For cores, debitage and tools, the second category C2 represents further more specific subdivisions, for instance irregular waste debitage would be coded as C1,C2 = 5,1, a 'flake-flake' representing a flake removed in course of trimming a flake blank to form a flake-tool would be coded as C1,C2 = 5,4 and a handaxe on a flake would be C1,C2 = 6,2. The use of numerical codes was found useful as saving time in data entry, and also easier for coding queries for subsequent quantitative analyses investigating the proportions of different types of artefact in different assemblages.

Table A6.2 Lithic condition categories

| Grade | Category                | Description                                                                        |
|-------|-------------------------|------------------------------------------------------------------------------------|
| 1     | Mint                    | As freshly knapped, razor sharp                                                    |
| 2     | Sharp/fresh             | Sharp to handle, ridges unaffected, but slight abrasion on parts of edges          |
| 3     | Slightly abraded/rolled | Ridges slightly abraded, edges lightly-moderately battered, smooth to touch        |
| 4     | Well-abraded            | Ridges very abraded, all edges moderately-heavily battered                         |
| 5     | Extremely abraded       | Almost a beach pebble, ridges non-existent or vestigial, heavily battered surfaces |

| C1              | C2                      | Description                                                                                                                                                                                                                                                                                                             |
|-----------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 - Natural     | -                       | Not humanly worked, can be interpreted as raw material, can be excluded from database, but if so needs to be quantified                                                                                                                                                                                                 |
| 1 - Raw materi  | ia –                    | No sign of working, but clearly a manuport                                                                                                                                                                                                                                                                              |
| 2 - Tested node | ule -                   | Nodule with only a couple of flakes off, no sign of whether a core or core-tool                                                                                                                                                                                                                                         |
| 3 - Chunk       | -                       | Knapped chunk. Uncertain whether core or core-tool, poss. because broken, or not very knapped, or just very ugly                                                                                                                                                                                                        |
| 4 - Core        | 1 - Conventional        | Flakes removed, generally reasonably large, from natural lump of raw material and no sign of preferential edge/part for use                                                                                                                                                                                             |
|                 | 2 - On flake            | Debitage used as a core                                                                                                                                                                                                                                                                                                 |
|                 | 3 - On core-tool        | Eg if re-used or after breakage                                                                                                                                                                                                                                                                                         |
| 5 - Debitage    | 1 - Irregular waste     | Lump, fragment or shatter; piece bigger than 20mm but not otherwise classifiable,<br>often resulting from knapping frost-fractured pieces; usually show some sign of<br>percussive impact, but in principle can apply to pieces that look completely natural,<br>but are interpreted as resulting from hominin knapping |
|                 | 2 - Flake, blade        | Flakes, or parts of flakes, must have signs of being part of a single removal, else classified as C2=1                                                                                                                                                                                                                  |
|                 | 3 - Chip/spall          | Flake/irregular waste less than 20mm                                                                                                                                                                                                                                                                                    |
|                 | 4 - Flake-flake         | Debitage from flaking a flake                                                                                                                                                                                                                                                                                           |
| 6 - Tool        | 1 - Handaxe (core-tool) | Usually evidence of preferential edge/part for use and bifacially worked; attention to straightening, to opposing handle, removal of small shaping flakes of no use in themselves                                                                                                                                       |
|                 | 2 - Handaxe (on flake)  | When a handaxe is made on a blank that shows definite evidence of originally having been a piece of debitage                                                                                                                                                                                                            |
|                 | 3 - Flake-tool          | Worked/utilised flake; working can be backing (eg possible interpretation as backed knife), retouching (eg. to form scraping edge) or notching                                                                                                                                                                          |
|                 | 4 - Percussor           | Evidence of focused battering, can appear on cores/core-tools, can have some working to facilitate handling                                                                                                                                                                                                             |
|                 | 5 - Anvil               | Battering on very large pieces, usually would be interpreted as percussors                                                                                                                                                                                                                                              |

## Table A6.3 Lithic artefact technological categories

The next four attribute categories T1–T4 reflect more detailed technological and typological attributions. These varied according to the basic technological category, so for instance, handaxes have a different selection of options than flake tools, and other technological categories lack more detailed T1–T4 options.

For handaxes, a classificatory scheme was applied based upon that developed by Wymer (1968) in his review of the Lower/Middle Palaeolithic archaeology of the Thames Valley, with a different numeric code entered as T1 according to the handaxe shape (Table A6.4). Other handaxe attributes such as the degree of butttrimming, the presence and knapping direction of tranchet sharpening and the peasants and orientation of a twisted profile are recorded as attributes T2–T4, as shown and described in the respective tables (Table A6.5 – A6.7).

For flake tools, the first two technological/typological attributes T1 and T2 are used to categorise the flakeblank, whether it is a natural scrap (and not realistically

| Shape category - T1                | Wymer type | Description                                                                                                                                                                                                                                                                             |
|------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 - Unspecific                     | -          | Indeterminate, eg. when broken or unclassifiable to other categories                                                                                                                                                                                                                    |
| 1 - Rough-out/abandoned            | -          | Pieces which appear to have been abandoned before completion, for instance<br>because of frost-fracturing, persistent failure to achieve thinning, or breakage                                                                                                                          |
| 2 - Simple                         | Proto      | Includes McNabb and Ashton's 'non-classic' handaxes, simple bifacial or unifacial edges opposed to natural handles                                                                                                                                                                      |
| 31 - Crude pointed (large)         | D          | Large (≥100mm) pointed/sub-pointed biface, no soft-hammer, thick, wavy edges, thicker and heavier at butt                                                                                                                                                                               |
| 32 - Crude pointed (small          | ) E        | Small (<100mm) pointed/sub-pointed biface, no soft-hammer, thicker and heavier butt, thick, wavy edges                                                                                                                                                                                  |
| 4 - Classic pointed                | F          | Well-made pointed handaxe with clear butt, straightish sides and thinned towards tip, can be any size; butt can be unworked or crudely worked                                                                                                                                           |
| 50 - Sub-cordate                   | G          | Progression from type F with convex sides, often more rounded point, thick/heavy<br>butt, widest part of handaxe well towards butt; butt can be unworked, crudely worked                                                                                                                |
| 51 - Sub-cordate<br>(plano-convex) | G          | Similar to above but with clear plano-convex profile, cf. Wolvercote Channel                                                                                                                                                                                                            |
| 52 - Sub-cordate (twisted)         | -          | Sub-cordate plan shape, but tip distinctly twisted relative to butt                                                                                                                                                                                                                     |
| 60 - Sub-ovate                     | GK         | Much more ovate version of sub-cordate; tip is smoothly rounded without any well-<br>defined point, widest part of handaxe is nearer middle of long axis, clear working to<br>shape/thin butt and sides as convex curve, although not as much as for true ovate or<br>cordate           |
| 7 - Cordate                        | J          | Cutting edge all round tool with thinning and shaping around butt, centre of gravity<br>near middle, bit more rounded than sub-cordate, but still has clear tip, with widest<br>part of handaxe towards butt                                                                            |
| 71 - Twisted cordate               | -          | Cordate plan shape, but tip distinctly twisted relative to butt                                                                                                                                                                                                                         |
| 80 - Ovate                         | К          | Cutting edge and thinning/shaping all round, centre of gravity near middle, more<br>rounded at base than cordate with widest part of handaxe towards middle, usually<br>one end recognisable as tip by being more elongated from widest part of handaxe<br>and often tranchet sharpened |
| 81 - Twisted ovate                 | K          | Ditto above, but clearly twisted tip                                                                                                                                                                                                                                                    |
| 9 - Side-chopper                   | L          | Segmental chopping tool, one knapped bifacial edge or sharper edge opposed by flat<br>edge or natural backing; crucial distinction with cleaver is that business edge is<br>parallel with main longitudinal axis rather than transverse                                                 |
| 10 - Classic ficron                | М          | Very pointed with symmetrical concave sides and well-defined heavy butt, cf. Furze Platt, Cuxton (Wenban-Smith 2004)                                                                                                                                                                    |
| 11 - Bout coupé                    | Ν          | Flat-butted cordate, trimmed all round butt, but with distinct corners between gently convex base and sides                                                                                                                                                                             |
| 12 - Cleaver                       | Н          | Key characteristic is straight cutting edge at tip end, transverse to main longitudinal orientation of tool, cf. Cuxton (Wenban-Smith 2004)                                                                                                                                             |

Table A6.4 Handaxe shape categories (TI)

| <i>T2</i> | Description                                                    |
|-----------|----------------------------------------------------------------|
| 0         | Inapplicable — indeterminate or unknown, eg. when broken       |
| 1         | Untrimmed butt — entirely cortex or natural fracture           |
| 2         | Slightly trimmed butt — over 50% cortex or natural fracture    |
| 3         | Mostly trimmed butt — less than 50% cortex or natural fracture |
| 4         | Wholly trimmed butt — all butt and corners trimmed             |

classifiable as a core-tool), piece of irregular waste or a normal flake (Table A6.8). The last two attributes T3 and T4 then reflect interpretation of the type of flaketool, with T3 representing the general category of flaketool, and T4 representing more detailed subdivision (Table A6.9). These subdivisions are not intended to be an exhaustive typological list of the Lower/Middle Palaeolithic, merely to represent basic groupings identified during analysis of the material from the Southfleet Road site. In general, it was not attempted to apply/develop a detailed typology, in light of serious doubts as to whether this would be interpretively meaningful. Rather, it was just attempted to reflect basic technological groupings, and then the range of technical detail exhibited by different technical categories in different assemblages were described and drawn on a case-by-case basis (see Chapters 17, 18 and 20 in particular).

The final categorical attribute recorded was the completeness/brokenness of each artefact. This was coded from 0–4 (Table A6.10), with minor variations of criteria depending upon the different technological categories. As described in the table, broken-off pieces estimated as less than 20mm maximum length were disregarded. For debitage, flake-tools and handaxes, different coding was used to reflect whether the

 Table A6.6 Handaxe tranchet sharpening categories (T3)

| T3 | Description                                                                                                                    |
|----|--------------------------------------------------------------------------------------------------------------------------------|
| 0  | Inapplicable — indeterminate or unknown, eg. when broken                                                                       |
| 1  | Absent — no tranchet                                                                                                           |
| 2  | Left tranchet — struck from left (removal underneath and tip away; can be on both faces, as long as consistently from left)    |
| 3  | Right tranchet — struck from right (removal underneath and tip away; can be on both faces, as long as consistently from right) |
| 4  | Complex tranchet — struck from both left and right (removals from both faces, with face underneath and tip away)               |

## Table A6.7 Handaxe twisting categories (T4)

| T4 | Description                                                                                                                                                                                                                         |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0  | Inapplicable — indeterminate or unknown, eg. when broken                                                                                                                                                                            |
| 1  | S-twist, anticlockwise tip-twist when viewed from above, looking down on tip, with tip twisting anticlockwise relative to butt; bifacial edge descending to R across middle of handaxe when profile viewed from side, with tip to R |
| 2  | Z-twist, clockwise tip-twist when viewed from above, looking down on tip, with tip twisting clockwise relative to butt; bifacial edge ascending to R across middle of handaxe when profile viewed from side, with tip to R          |

| <i>T1</i> | <i>T2</i> | Description                                            |
|-----------|-----------|--------------------------------------------------------|
| 0         | 0         | Made on a scrap of natural, eg. frost-fractured, flint |
| 5         | 1         | Made on a piece of irregular waste                     |
| 5         | 2         | Made on a normal flake                                 |

#### Table A6.8 Flake-tool blanks, technological categories (TI and T2)

# Table A6.9 Flake-tools, typological categories (T3 and T4)

| Τ3               | Τ4                      | Details                                                                                                                  |
|------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------|
| 1 - Notches      | 10 Single notch         | Clear single notch, can be backed by natural cortical handle or blunting/backing retouch                                 |
|                  | 11 Multi-notched        | Two or more notches, scattered around                                                                                    |
|                  | 12 Linear notches       | Two or more notches, aligned on one edge (sometimes to form crude denticulate)                                           |
| 2 - Flake-knives | 20 Utilised flake       | Use-damaged, evidence of macro use-wear but no retouch                                                                   |
|                  | 21 Knife                | Blunting/backing retouch opposite/beside natural cutting edge, which can show macro-wear, to facilitate handling and use |
| 3 - Scrapers     | 30 Gen scraper          | General scraping edge/s                                                                                                  |
| -                | 31 "Mousterian" scraper | Convex unifacial scraping edge down one long side of a medium-large flake                                                |
| 4 - Saws         | 40 Gen saw              | Unifacial/bifacial sharpening of edge/edges of flake to form sawing edge on flake                                        |
| 5                | 50                      | Point/awl?                                                                                                               |
| 6                | 60                      | Misc. other; describe on case-by-case basis                                                                              |

| Code | Core   | Debitage or flake-tool                                                                                                                                                                                                                                                                                                                                  | Handaxe                                                                  |
|------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| 0    | Broken | -                                                                                                                                                                                                                                                                                                                                                       | Broken: piece of core-tool; not clearly butt,<br>middle or tip remaining |
| 1    | Whole  | Whole — missing bits <20mm                                                                                                                                                                                                                                                                                                                              | Whole: missing bits <20mm                                                |
| 2    | -      | <ul> <li>20 - Proximal present: missing proximal bit &lt;20mm</li> <li>and distal bit ≥20mm</li> <li>21 Proximal present: Siret fracture (left), when looking</li> <li>at ventral surface, with strik. plat. upward</li> <li>22 Proximal present: Siret fracture (right), when looking</li> <li>at ventral surface, with strik. plat. upward</li> </ul> | Butt present: missing butt <20mm and tip<br>≥20mm                        |
| 3    | -      | Mesial present: missing proximal and distal bits both $\geq 20 \text{ mm}$                                                                                                                                                                                                                                                                              | Middle present: missing butt and tip, both ≥20mm                         |
| 4    | -      | Distal present: missing proximal bit ≥20mm and distal<br>bit <2 mm                                                                                                                                                                                                                                                                                      | Tip present: missing butt ≥20 mm and tip <20mm                           |

Table A6.10 Completeness/breakage codes for different lithic technological categories [Irregular waste is by definition always whole]

proximal, middle part or distal end was present. And for flakes and flake-tools, a slightly more detailed coding was used when the proximal end was present, to identify and distinguish between left and right sides of Siret fractures.

#### Quantitative data

A relatively restricted range of six quantitative attributes was recorded (Table A6.1), chosen as being particularly relevant to taphonomic/post-depositional interpretation and investigation of the *châine opératoire* and organisation of lithic production. Experimental work by Wenban-Smith (1996) has firmly established that two attributes in particular – percentage cortex and dorsal scar count – are especially useful for categorising the stage of the reduction sequence represented by waste debitage. Therefore these two attributes were recorded here for flakes and flake-tools. The percentage of cortex (or unknapped natural flint surface) on the dorsal surface was categorised by eye as one of 11 grades 0–10 as specified in the accompanying table (Table A6.11). The dorsal scar count was based on the estimated size of the complete removal represented by a dorsal scar, not just the size of the visible remnant, and scars representing removals thought to be less than 20mm maximum length were disregarded. For flake tools, it was attempted to focus on counting scars from flakes removed during the original knapping process rather than from secondary working to form the flake-tool.

The remaining four quantitative attributes recorded were the basic size measurements of length, width and thickness (ML, MW and MT), as well as weight (WTG). There are innumerable variations on the precise way of measuring these apparently straightforward flakesize attributes. Those applied here are illustrated (Fig. A6.1), with the additional factor that broken-off parts less than 20mm were ignored, and measurements estimated to allow for their presence if necessary. This was so that the size data were directly comparable with experimental models based on complete flakes.



Figure A6.1 Measurement of flake size: (a) maximum length ML and maximum width MW; (b) maximum thickness MT

Table A6.11 Codes for recording amount of cortex present

| Code | Description |  |
|------|-------------|--|
| 0    | 0%          |  |
| 1    | 1-10%       |  |
| 2    | 11-20%      |  |
| 3    | 21-30%      |  |
| 4    | 31-40%      |  |
| 5    | 41-50%      |  |
| 6    | 51-60%      |  |
| 7    | 61-70%      |  |
| 8    | 71-80%      |  |
| 9    | 81–90%      |  |
| 10   | 91-100%     |  |

#### Notes

Finally, various notes and sketches were recorded on the paper archive, drawing attention to anything of interest seen, such as distinctive raw material, unusual knapping strategies or the distribution of fine macrowear traces on the sharp edges of otherwise unworked flakes. To avoid ambiguity when making these descriptive notes, core-tools are by default oriented butt down, and flakes with striking platform up. When describing working on flakes, 'struck off' refers to the surface bearing the scar/s of any retouch/removals, and 'struck on' refers to the surface hit by the percussor. Hence the normal situation is struck on the ventral surface and off the dorsal surface.

# Appendix 7

# Thin section data

by Richard Macphail

| Table A7.1 Soil micromo                                | rphology: d   | escriptions and preliminary interpretations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Microfacies type (MFT)/<br>Soil microfabric type (SMT) | Sample<br>No. | Depth (relative depth)<br>Soil Micromorphology (SM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Preliminary Interpretation and Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MFT AI/SMT<br>lal, la2, 2al                            | M40082        | 290-370mm<br>SM: Heterogeneous with dominant fine and medium sandy SMT 1a1 in<br>lower half, mixing with common fine sandy SMT 1a2 and frequent<br>(fragments/fills) of SMT 2a1 upwards, <i>Microstructure:</i> massive with fissures<br>(1.5-2mm wide), 25% voids, fine to coarse fissures, vughs with simple<br>packing voids, (root?) channels traces (0.5-0.7mm). <i>Coarse Mineral</i> – C:F<br>(Coarse:Fine limit at 10µm), SMT 1a1=85:15: moderately poorly sorted<br>angular coarse silt/very fine sand-size quartz, feldspar, micas (and opaques<br>including probable haematite), with medium sand-size mainly moderately<br>weathered sub-rounded glauconite (some little-weathered glauconite), fine<br>and medium sandy clay clasts (colourless, 1st order grey birefingence –<br>palygorskite2, relict of Createcous), and rare very coarse sand-size rounded<br>clasts of SMT 2a1; SMT 1a2: C:F=60:40, very dominant moderately poorly<br>sorted angular coarse silt/very fine sand-size glauconite. <i>Coarse Organic and<br/>Anthropogenic: Fine Fabric</i> – SMT 1a1: cloudy dusty pale brownish grey<br>(PFL), moderately low interference colours (close porphyric to coared grain,<br>speckled and patchly trystallitic, XPL), very pale brown (OLL), rare trace of<br>once-humic iron-staining; SMT 1a2: as SMT 1a1, with close porphyric <i>cf</i><br>distribution; SMT 2a1: cloudy and finely speckled pale brown (OLL), are trace of<br>once-humic iron-staining; SMT 1a2: as SMT 1a1, with close porphyric <i>fi</i><br>distribution; SMT 2a1: cloudy and finely speckled pale brown (OLL), are trace of<br>once-humic iron-staining; SMT 1a2: as SMT 1a1, with close porphyric <i>fi</i><br>distribution; SMT 2a1: cloudy and finely speckled pale brown (OLL), moder-<br>ately low interference colours (open porphyric; stipple speckled b-fabric,<br>XPL), greyish brown (OLL), possible thin humic staining and occasional very<br>fine relict amorphous organic matter. <i>Padofeatures: Textural</i> –occasional void<br>hypocoatings; associated with thin relict root(?) channels; rare of iron impreg-<br>nations of possibly once-humic sediment? <i>Fabric</i> -many fabric minick-<br>including v-shaped burrows; | Context 40057 (Phase 1) South (E) 'Tilted block'<br>Lowermost sequence of site<br>Boundary zone between non-calcareous moderately poorly<br>sorted, coarse silty and fine and medium sandy, glauconite<br>medium sand-rich sediments with little fine material (40057),<br>which upwards become mixed with moderately sorted coarse<br>silts and fine sands, sometimes with fewer glauconite, and mixed<br>with clasts and burrowed-in weakly humic clay (LOI=1.22%).<br>Glauconite is moderately weathered with some little-weathered<br>grains, and opaques include haematite. A relict thin (1.5-2mm)<br>probable root channel is marked by iron hypocoatings; iron<br>staining also affects traces of organic matter.<br>This is a moderately mixed junction between fine and medium non-<br>calcareous glauconitic sands, and overlying silty glauconitic sands,<br>and clayey silts, probably deposited as alluvium and recording dimin-<br>ishing energy. There has probably been some burrowing and rootings<br>the latter affected by secondary iron staining, which marks a minor<br>amount of sediment ripening/soil formation. Clayey deposits were<br>probably weakly humic originally. Context 40058 could not be<br>sampled because the sediment monolith was not intact, but apparently<br>clayey inwash into 40057 probably derives from overlying soliflucted<br>40058. |
| MFT E4/SMT<br>3a3, (3a1)                               | M40418A       | 45-125mm<br>45-70mm<br>SM: Heterogeneous with poorly sorted sands and fine sands (SMT 3a3),<br>with coarse silt and coarsely mixed clay (depleted SMT 3a1); <i>Microstructure:</i><br>massive, finely laminated; 10% voids, fine packing voids and fissures; <i>Coarse</i><br><i>Mineral</i> – C:F, 80:20, mainly well sorted coarse silts, with patches of less well-<br>sorted fine to medium sands; few glauconite and very few coarse silt-size clay<br>papules present. <i>Coarse Organic and Anthropogenic: Fine Fabric</i> – as SMT 3a1<br>and 3a3. <i>Pedofeatures – Amorphous</i> : trace amounts of iron staining and<br>possible Fe-Mn fine nodules. <i>Fabric</i> – occasional broad burrows.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Context 40166 (Unit 4?)-40158 (Phase 7/6a)<br>Context 40158<br>Sediments become less humic and contain less fine detrital<br>organic matter (OM), being clayey deposits, but with marked<br>iron-staining of organic traces.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Table A7.1 (continued 2)                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Microfacies type (MFT)/<br>Soil microfabric type (SMT) | Sample<br>No. | Depth (relative depth)<br>Soil Micromorphology (SM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Preliminary Interpretation and Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                        |               | 70-115mm: as MFT C1/SMT 5a1 (M40150B), with few sandy SMT 3a3<br>115-125: as MFT E3/SMT 6a2 (M40418B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MFT E3/SMT 6a2                                         | M40418B       | <ul> <li>170-250mm</li> <li>SM: Heterogeneous; <i>Microstructure:</i> massive, partially laminated, 15% voids, fissures. <i>Coarse Mineral</i> – C:F, 60:40 (sandy) and 40:60 humic clays. <i>Coarse Organic and Anthropogenic</i> – examples of 5mm long horizontally oriented blackened plant material (eg, 3 thin [20-30]µm-thick] monocot? leaf fragments?; occasional fragments and patches of reddish amorphous OM 1-3mm in size; many fine charcoal (100-250 µm). Fine Fabric – SMT 6a2: speckled and dotted brown to dark reddish brown (PPL), moderately low to moderate interference colours (open to close porphyric, grano-striate b-fabric, XPL), brown to dark brown (OIL), humic with very abundant amorphous and very fine charred OM. <i>Pedofeatures: Textural</i> – very abundant clayey pans (sedimentary muds) and channel infills (1+mm wide), and associated intercalations and void/matrix coatings. <i>Fabric:</i> –many thin burrows.</li> <li>215-250mm</li> <li>As MFT E2/SMT 3a3, M40418C, below, but with increasing amounts of SMT 6a2 (humic clay containing very fine charcoal)</li> <li>BD (40158): 6.68% LOI</li> </ul> | Contexts 40158-40040 (Phase 7/6a)<br>Mainly laminated very humic clayey fine sands and humic clays,<br>with abundant included fine amorphous organic matter and fine<br>charcoal (100-250µm), and few fragments of amorphous peat.<br>An example of a horizontally oriented 5mm long very thin black-<br>ened monocotyledonous leaf/leaves fragment occurs. Humic<br>clays sometimes occur as clayey pans and infills. Minor thin<br>burrowing has occurred. Markedly high LOI of 6.68%.<br><i>These are laminated peaty clays and peaty sands, horizontally<br/>deposited in low to moderately low energy conditions, allowing<br/>horizontal deposition of derital leaves, fragments of pure peat and<br/>ubiquitous fine and very fine charcoal. Organic matter shows no sign<br/>of being ferruginised. Low energy (seasonal?) minerogenic peat forma-<br/>tion associated with burned landscape – wildfires??</i> |
| MFT E2/SMT 3a3 1                                       | M40418C       | <ul> <li>400-480mm</li> <li>400-480mm (40158)</li> <li>SM: Homogeneous fine to medium sands (clayey channel fills); <i>Microstructure</i>massive with some relict laminae (1-5mm); 40% voids, simple packing voids, open vughs and channels; <i>Coarse Mineral</i> – C:F, 90:10, moderately well sorted very fine, fine sands with medium angular and subangular sands and very coarse silt-size quartz, quartzite and feldspar, very few glauconite. <i>Coarse Organic and Anthropogenic</i> – many thin ferruginised amorphous OM stringers? <i>Fine Fabric</i> – as SMT 3a3 (iron-stained). <i>Pedofeatures</i> – occasional ~1mm clayey 'circular' channel fills. <i>Amorphous</i> –abundant ferruginisation, thin ironpan formation, some possibly pseudomorphic of OM. <i>Fabric</i> – many 0.5-1mm size thin burrows.</li> <li>450-480mm (40039)</li> </ul>                                                                                                                                                                                                                                                                                         | Contexts 40040-40025-40158 (Strat. Phase 7/6a)<br>Moderately well sorted massive and sometimes laminated very<br>fine, fine sands containing coarse silt and medium sand. Many<br>thin burrows, examples of clayey inwash down fine (1mm) root(?)<br>channels and very thin stringers of ferruginised OM (??) inwash.<br><i>Channel fine sands mainly, that were burrowed and rooted, and thus<br/>episodically/seasonally exposed. Possibly humic matter from above<br/>filtered down and became ferruginised. Clayey sediments above were<br/>introduced downprofile along empty relict root channels.</i>                                                                                                                                                                                                                                                                                                           |
| MFT E1 /SMT 3a3, 3a4                                   |               | SM – Homogeneous coarse silt-very fine sands (SMT 3a3), with clayey infills (SMT 3a4). <i>Microstructure</i> – laminated (0.5-2mm), 35%, simple packing voids, some vughs and fissures associated with laminae. <i>Coarse Mineral</i> – coarse silt-very fine sands, with C:F of 90:10. <i>Coarse Organic and</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Context 40039<br>Laminated moderately well sorted coarse silts and very fine<br>sands, with patchy 'layer'/infills of clay with occasional ferrug-<br>iniseed very fine organic matter and phytoliths present. Very thin<br>ironpans associated with sandy laminae appear to be relict                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

515

| Table A7.1 (continued 3)                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Microfacies type (MFT)/<br>Soil microfabric type (SMT) | Sample<br>No. | Depth (relative depth)<br>Soil Micromorphology (SM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Preliminary Interpretation and Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                        |               | <i>Anthropogenic</i> - occasional very thin 30-50µm ferruginised amorphous layers (peat?) – now thin iron pans. <i>Fine Fabric</i> – SMT 3a4: speckled pale greyish brown to brown (PPL), moderately low interference colours (open porphyric, grano-striate b-fabric (textural pedofeatures?), XPL, grey, pale yellow to brown (iron staining – OIL), occasional very fine ferruginised OM and phytoliths present; <i>Pedofeatures</i> : Textural – abundant patchy void infils (cf SMT 3a4) and formation of embedded grains/fine sand inclusions; <i>Amorphous</i> : abundant ferruginisation of relict amorphous OM, and patchy iron staining of clayey infils. <i>Excrements</i> – possible rare very thin organic excrements associated with relict 'peat' laminae, now equally ferruginised.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | amorphous OM and can involved very thin relict excrement<br>pseudomorphs.<br><i>Fluvial coarse silts and very fine sands; perhaps seasonal (spring)</i><br><i>alluviation with winter? period of clay deposition forming infills. Sand</i><br><i>laminae also sometimes associated with thin peat formation and is</i><br><i>partial working by small invertebrates. Coolish climate? Near channel</i><br><i>alluviation.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MFT D3/SMT<br>3a1, 3a2, 3a3                            | M40365A       | 50-130mm (context 40078-40099 boundary at 110mm)<br>SM - Heterogeneous with mainly poorly iron-stained SMT 3a1, and<br>frequent silty and fine sandy SMT3a3. <i>Microstructure</i> -massive (relict<br>laminae/pans), with fine fissuring (medium prisms), 25% voids, fine fissuring<br>and fine to medium channels. <i>Coarse Mineral-</i> as M40151B, with example of<br>2.5mm-size flint and 1.5mm-size quartz. <i>Coarse Organic and Anthropogenic -</i><br>very abundant fine root traces, some ferruginised and some as blackened<br>remains (monocot?); occasional very fine to fine fragments of peat/plant<br>(black and red in PPL, eg 1mm in size); <i>Fine Fabric-</i> as SMT 3a1 with very<br>thin humic staining, rare to occasional ferruginised and blackened very fine<br>OM. <i>Pedofeatures: Textural -</i> many pans, textural intercalations, associated<br>with embedded grains and void coatings and infills (matrans); Depletion:<br>occasional strongly iron depleted zones. <i>Amorphous-</i> rare amounts of weak<br>yellowish staining and ferruginised OM; some as poor pseudomorphs of plant<br>material/roots, possibly relict iron/sodium carbonate? <i>Fabric -</i> very abundant<br>coarse fabric mixing (rooting disturbance as in monocot peat, mineral<br>junctions, invash of silty material etc).<br>BD (40078): 2.44% LOI. | Context 40078-40099 transition (Phase 6c/6a)<br>Weakly humic clayey sediment with fine organic fragments and<br>(monocotyledonous?) root traces and common patches of<br>partially bedded silty clay loam (40078) over iron-depleted<br>clayey 40099. 40078 includes blackened relict peat/mocot<br>plant/root fragments, up to 1mm in size (red and black under<br>PPL); overall OM content reflected in 2.44% LOI. Textural<br>intercalations and associated matrix coatings and fabric mixing<br>associated with relict channels and fissures.<br>Weakly humic remains of putative junction between monocotyledonous<br>peat and minerogenic sediments, with flood wash bringing in silfs;<br>hence mixing down along old root channels. Rooting down through<br>waterlogged clayey sediment caused fabric disruption, mixing and<br>intercalations. A period of moderate stasis, with flooding of inwash silts<br>and peat growth? |
| MFT B1/SMT<br>3a1, 3a2                                 | M40365B       | 220-300mm<br>SM- Moderately heterogeneous with very dominant iron-stained and iron-<br>depleted clayey SMT 3a1 and very few fine and medium sandy SMT 3a3.<br><i>Microstructure</i> – massive, 30% voids (20% intrapedal), fine fissures. <i>Coarse</i><br><i>Mineral</i> – C:F, as M40151B; more sandy SMT 3a3 can be focused along<br>possible relict root channels. <i>Coarse Organic and Anthropogenic</i> – many<br>traces of medium (max 5mm) roots. <i>Fine Fabric</i> – SMT 3a1 and 3a3, as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Contexts 40099 (Phase 6c/6a)<br>Mainly iron-depleted clay, characterised by ~1mm-thick clay<br>panning (sedimentation), with silt-rich clay loam along possible<br>relict root channel fills, which are marked by iron staining and<br>relict likely hypocoatings. Relict root features are 3-5mm wide;<br>some show ferruginised traces/oxidised traces of probable pyrite<br>framboids associated with roots.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

Waterlogged clay sediments deposited as muddy pans, very low energy alluvial events/flooding. These were rooted by plants, possibly shrubs/

M40151B. Pedofeatures: Textural - very abundant relict panning (~1mm thick diffuse laminae). Depletion - many iron-depleted areas, some

| Table A7.1 (continued 4)                                 | -               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Microfacies type (MFT)/<br>Soil microfabric type (SMT)   | Sample<br>) No. | Depth (relative depth)<br>Soil Micromorphology (SM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Preliminary Interpretation and Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                          |                 | especially associated with old rooting. $Amorphous$ – abundant moderate to strong iron staining.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | woodland(?) and more silty clay loam infilled these on decay.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| MFT B1/SMT<br>3a1, 3a2                                   | M40365C         | <ul> <li>310-390mm</li> <li>310-390mm</li> <li>Sample quite fragmented and also was probably part insect burrowed previously.</li> <li>SM – Heterogeneous with grey clayey SMT 3a1 and iron-stained SMT 3a2.</li> <li>Microstructure – massive2; fine fissuring and channels (10% voids?). Coarse Mineral – C:F (Coarse:Fine limit at 10µm), as M40151A and B. Coarse Organic and Anthropogenic – many traces of (sometime possible woody) roots (now ferruginised) up to 3mm in size. Fine Fabric – as M40151A; Pedofeatures – as M40151A.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Contexts 40103 (Phase 6c/6a) Central part of site<br>Generally, iron depleted, very weakly humic clay, but with many<br>ferruginised traces of roots, some possibly once-woody(?) up to<br>3mm in diameter.<br><i>Waterlogged lacustrine clay sediments acting as rooting medium for</i><br><i>wetland and possible woodland plants.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| D1b/SMT<br>10a, 10b                                      | M40196          | 85-165mm<br>1) Brownish layer: 85-135(155)mm (dominantly SMT 10a)<br>2) Greyish layer: 135(155)-165mm (dominantly SMT 10b)<br>SM – Heterogeneous. <i>Microstructure</i> – massive, with curved horizontal<br>fissuring, 10% intrapedal voids, fine channels and closed vughs. <i>Coarse</i><br><i>Mimeral</i> – as M40195. <i>Coarse Organic and Anthropogenic</i> – 1) 2 fire-cracked<br>filmt (5mm and 10mm-in size; calcined), strongly rubefied clay ~1mm<br>(opaque, reddish brown under OIL, compared to yellowish orange<br>surrounding iron stained soil), and rare fine rubefied darkish brown (PPL),<br>moderately low interference colours (open and close porphyric, speckled<br>and grano-striate and uni-striate b-fabric, XPL), orange (OIL), trace<br>amounts of very fine blackened OM/charcoal(?); SMT 10b: speckled greyish<br>brown (PPL), XPL as SMT 10a, grey to pale yellow (OIL). <i>Pedofatures</i> –<br>very abundant textural intercalations, muddy laminae and void (sometimes<br>closed vugh, polyconcave vugh) matrix coatings, also embedding large grains<br>such as clacined flint fragment. <i>Amorphous</i> – very abundant iron staining in<br>upper half. | Context 40100 (Phase 6) brownish over greyish<br>This is a brownish clay loam, partially mixed with grey clay loam,<br>and becoming more dominantly grey downwards. The micro-<br>fabric is characterised by very abundant textural pedofeatures<br>(intercalations, pans and matrix void coatings – and associated<br>closed vughs) and iron staining. Fine channelling and fissuring<br>affected the massive soil-sediment. Two fire-cracked flints (5mm<br>and 10mm-in size, calcined), and an enigmatic embedded<br>strongly rubefied clay clast (~1mm) occurs. Flints are also<br>embedded in the soil-sediment matrix.<br>This is a muddy mixed clay loam, with mainly iron stained brownish<br>sediment in the upper half of the slide and iron-depleted clay loam<br>below. The upper part also shows mixed grey and brown microfabrics,<br>and the inclusion of probable fire-cracked flints, and possible rubefied<br>clay material. These materials may be relict of a combustion zone,<br>but have been eroded and fragmented by colluvial processes. |
| MFT D1a/SMT<br>9a1 and 9a2<br>Over<br>MFT D1b/SMT<br>9a1 | M40195          | <ul> <li>130-210mm</li> <li>SM – Heterogeneous/broadly layered but with SMT 9a throughout, 1) 130-<br/>SM – Heterogeneous/broadly layered but with SMT 9a throughout, 1) 130-<br/>160mm: dusty clayey, 2) 160-185mm: fine clayey with clay clasts (SMT 9a2),</li> <li>3) 185-210: sandy and gravelly clay. <i>Microstructure</i> – massive; 20% with<br/>curved planar voids/ fissures, collapsing vughs and planar voids and channels.<br/><i>Coarse Mineral</i> – C:F, 1) 30:70, with coarse silt; 2) 50:50, with coarse silt and<br/>fine sand and coarse sand to gravel-size angular clay clasts (from CwF?); 3)</li> <li>80-90:20-10, with coarse silt to very coarse sand and few gravel (max</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Context 40100 (sand lens boundaries (Phase 6)<br>This thin section is located along layered junctions between<br>sandy microfacies (coarse silt, fine to very coarse sands with fine<br>[max 5mm flint] gravel) and overlying a moderately, sandy clayey<br>layer containing many fine gravel-size brownish clay clasts (as in<br>M40196 [Context 40100] or Clay-with-Flints like?), and with<br>upwards, a greyish clayey layer where textural intercalations,<br>matrix void coatings and clayey pans are abundant. There is weak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| -       |
|---------|
| ŝ       |
| b       |
| ň       |
| Ę       |
| G       |
| Ŭ       |
| _       |
|         |
| ⊳.      |
| e A7.   |
| ble A7. |

| Table A7.1 (continued 5)                               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                          |
|--------------------------------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Microfacies type (MFT)/<br>Soil microfabric type (SMT) | Sample<br>) No. | Depth (relative depth)<br>Soil Micromorphology (SM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                          |
|                                                        |                 | 5mm)(ironstone, iron-stained clay also present); both weathered and freshish glauconite is present. <i>Coarse Organic and Anthropogenic</i> – possible inclusion of fine angular flakes. Fine Fabric – SMT 9a: dusty to speckled greyish to dark greyish brown (PPL), moderately low interference colours (open to close porphyric, speckled, grano- and striate b-fabric, XPL), pale greyish yellowish brown (OLL), rare very fine blackened/charred OM. SMT 9b (clay clast material): Contains 30% coarse silt and fine-medium sand, dark yellowish brown (PPL), low to moderately low interference colours (close porphyric, speckled, grano- and striate b-fabric, XPL), yellowish orange (OLL), and as 9a. <i>Pedofeatures: Textural</i> – occasional textural intercalations, muddy laminae and void (sometimes closed vugh, polyconcave vugh) matrix coatings (150-300µm-thick), increasing to very abundant upwards. <i>Amorphous</i> (?).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | to mode<br>picking c<br>and mo<br>blackened<br><i>The thin</i> ,<br><i>to the clay</i><br><i>deposited</i> ,<br><i>deposited</i> ,<br><i>eroded</i> 4<br><i>material</i><br><i>more muc</i><br><i>sediments</i><br><i>tions, mat</i><br><i>be an upc</i> |
| MFT C4a/SMT<br>7a1, 7a3 (7a2)                          | M40194          | 320-400mm<br>SM- Heterogeneous with dominant clayey SMT 7a1 (with silty variants),<br>common (pale iron stained) SMT 7a3 and very few SMT 7a2 (speckled with<br>trace amounts of very fine charcoal?). <i>Microstructure –</i> massive (coarse<br>prisms?), 10% voids, fine channels and fissures. <i>Coarse Mineral</i> – as below;<br>2.1mm-size quartzite. <i>Coarse Organic and Anthropogenic –</i> trace amounts of<br>very fine charcoal; very fine sand size burnt? mineral grains/flint? 2mm-size<br>cracked flint. <i>Fine Fabric –</i> SMT 7a1: cloudy and dusty pale grey (PPL),<br>moderate interference colours (open porphyric, speckled, uni-and grano-<br>striate, XPL), pale grey (OLL), very poortly humic with rare very fine<br>amorphous, blackened and charred OM, phytoliths present; SMT 7a2: finely<br>speckled grey (PPL), moderate low interference colours (as 7a1), pale grey<br>(OIL), very poortly humic with rare to occasional very fine amorphous, black-<br>ened and charred OM, phytoliths present; SMT 7a3: pale cloudy (ochreous<br>speckled and dotted) yellowish grey brown (PPL), moderate interference<br>colours (open porphyric, speckled, uni-and grano-striate, XPL), pale orange<br>to orange (OIL), many to abundant fine (5-10µm) ferruginised amorphous<br>OM/pyrite pseudomorphs? <i>Pedofeatures</i> : Textural -very abundant clayey inter-<br>calations; occasional silt concentrations. <i>Depletion –</i> occasional strong iron<br>depletion, sometimes including fine fabric SMT 7a2. <i>Amorphous –</i> probable<br>oxidised pyrite spheroids?; abundant weak Fe staining and many ferruginised<br>OM/oxidise pyrite? <i>Fabric –</i> very abundant mixing of weakly stained/ferrugi-<br>nous microfabric SMT 7a3 (oxidised pyrite). | Context<br>Heteroge<br>stained c<br>2mm-size<br>tions (a<br>2mm-size<br>tions (a<br>sometime<br>a sometime<br>phytolith<br>Fabric m<br><i>Muddy a</i><br><i>iron-deple</i><br><i>The latten</i><br><i>Possible a</i><br><i>freshwaten</i>                |

Preliminary Interpretation and Comments

rate iron staining throughout, possibly sometimes

ut relict amorphous organic matter. Both weathered

derately fresh glauconite is present. Rare fine ection records a relatively high energy event/wash compared vey deposits generally, with first sands and fine gravels being followed by sandy clays containing gravel-size clay clasts (Avery et al. 1959)), suggesting a lowering of energy and ldy colluvial(?) deposition upwards. Lastly, muddy clayey are deposited which are characterised by textural intercalarix void coatings and clayey pans. Generally, this appears to 0100 material [from elsewhere]/ a Clay-with-Flints -like l/charred very fine organic matter occurs.

ard-fining/decreasing energy sequence.

lay with fine (5-10µm) ferruginised amorphous OM? e nodules - possible pyrite pseudomorphs). Trace of very fine charcoal, blackened detrital OM and lay (containing coarse silt and fine sand) probable neous, massive, compact iron depleted clay and irone fire-cracked flint. Characterised by textural intercalas present; examples of possible burned mineral grains. ssociated with uni- and grano-striate b-fabric), es silty clay in nature, and patches and infills of yellow-40100 (stones/artefact inclusions?) (Phase 6) ixing of two major microfabric types.

The Ebbsfleet Elephant

has been affected by possible pyrite formation (associated nd likely physically disturbed sediment, which was generally ted (gleyed) but which once had organic sediment mixed in. ang inputs and animal wallow (cf Unit 4u at Boxgrove OM) and ferruginisation of this material or the fine OM. fond?).

BD (40100): 1.73% LOI, 0.179 mg g 1 phosphate-P.

| Table A7.1 (continued                                | 6)               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Microfacies type (MFT)/<br>Soil microfabric type (SM | Sample<br>T) No. | Depth (relative depth)<br>Soil Micromorphology (SM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Preliminary Interpretation and Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| MFT C4b/SMT<br>8a1 and 8a2                           | M40193A          | 290-365mm<br>SM – as below. <i>Microstructure</i> – as below, with prismatic fissuring – 30% voids<br>(currently); closed vughs. <i>Coarse Mineral</i> – C:F, 40-60:60-40, poorly sorted<br>coarse silt to medium, coarse, very coarse sand and example of rounded flint<br>gravel (2.5mm) with bleached rim. <i>Coarse Organic and Anthropogenic</i> – root<br>trace. <i>Fine Fabric</i> – as below. <i>Pedofeatures: Textural</i> – very abundant intercala-<br>tions and associated closed vughs, for example. <i>Amorphous</i> – many moderate<br>iron staining, with ferruginised organic very thin excrements in root<br>trace/channel. <i>Excrements</i> – trace of organic very thin excrements in root                                                                                                                                                                                      | Context 40100 (Phase 6) (southern end of site?)<br>Similar to below, but more poorly sorted fine to coarse sands and<br>sandy concentrations. Very abundant textural intercalations, with<br>associated closed vugh formation. Fewer (many) and more<br>weakly iron stained fabrics. Example of fine gravel and root trace<br>with ferruginised once-organic very thin excrements were noted.<br><i>Muddy trampled(?) water-saturated sediments containing higher<br/>amounts of poorly sorted sands, compared to below; perhaps as the<br/>result of slightly increasing episodic fluvial activity(?).</i>                                                                                                                                                        |
| MFT C4b/SMT<br>8a1 and 8a2                           | M40193B          | 370-450mm<br>SM – Heterogeneous, as M40194 with SMT 8a1 and 8a2, with three broad<br>layers of clayey fine sand, centre 20mm characterised by textural pedofea-<br>tures. <i>Microstructure</i> – massive, 15% voids, fine channels, partially collapsed<br>(?) fissures, vughs. <i>Coarse Mineral</i> – C.F, 40:60. <i>Coarse Organic and</i><br><i>Anthropogenic</i> –400µm-size calcined flint fragment; 8mm-size angular fire-<br>cracked(?) flake with traces of rubefication. <i>Fine Fabric</i> – SMT 8a1 (as 7a1)<br>and 8a2 (as SMT 7a3), both with 40% sand-size coarse mineral material.<br><i>Pedofeatures</i> – <i>Textural:</i> very abundant clayey infills eg in 3mm wide infills<br>along junction between upper and lower layers, and intercalations<br>throughout. <i>Amorphaus</i> – very abundant iron staining – weak to strong –<br>especially concentrated in central layer. | Context 40039 lower (Phase 6) (southern end of site?)<br>Similar to M40194 but more sandy, with three c 20-25mm thick<br>layers of clayey fine sand (40% fine sand), with textural clayey<br>intercalations and Fe staining throughout, but concentrated in<br>central layer where there are clay infills up to 3mm wide and an<br>irregular boundary. A 400µm-size calcined flint fragment and a<br>8mm-size angular fire-cracked(?) flake (traces of rubefication<br>were noted.<br><i>Layered muddy fine sand deposition, with for example marked iron<br/>staining, dayey intercalations and clayey infills, possibly indicative of<br/>trampling. Artefact inclusions indicate human presence.</i>                                                            |
| MFT C3b/SMT<br>6a1                                   | M40149           | <ul> <li>350-430mm</li> <li>As 40099 in M40150A, below, with 2mm-size angular flint fragment (flake?) occurring as an embedded grain; trace amounts of very fine fragments of amorphous OM (max 150µm) in fine channels towards upper part of thin section.</li> <li>SM – Heterogeneous; <i>Microstructure</i>: as below, fissured, 30% voids. <i>Coarse Mineral</i> –as below. <i>Coarse Organic and Anthropogenic</i> – trace amounts of amorphous OM; possible flint flake; <i>Fine Fabric</i>: SMT 6a1. <i>Pedofeatures</i> – as below. <i>Textural</i> – abundant sedimentary clayey intercalations, including 4mm-thick curved layer/fill at 410mm. <i>Amorphous</i> – trace amounts of hypocoatings and OM pseudomorphs. <i>Fabric</i> – very broad burrow (?) with collapsed thin excrements.</li> </ul>                                                                                     | Context 40078-40099 interface (Phase 6d/6c/6a)<br>40099 – 6a<br>Iron depleted clay, as below, with abundant sedimentary clayey<br>intercalations, including a 4mm-thick layer/fill at 410mm depth.<br>A possible 2mm-size flint flake is present, as an 'embedded<br>grain'. Near the top, trace amounts of amorphous organic matter<br>inclusions occur in channels. Very weak trace amounts of iron<br>hypocoatings occur.<br><i>Continued muddy lacustrine sediment accumulation, with again a</i><br><i>possible flint flake fragment occurring as an embedded grain suggesting</i><br><i>it sank down under muddy conditions. Inclusions of preserved</i><br><i>amorphous organic matter may stem from inwash from overlying</i><br><i>contexts</i> (40078?). |
| MFT C3a/SMT 6a1                                      | M40150A          | 220-295mm<br>220-240(275)mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Context 40099-40103 transition (Phase 6d/6c/6a); 6c over 40099 - 6a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

519

| Table A7.1 (continued 7)                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Microfacies type (MFT)/<br>Soil microfabric type (SMT) | Sample<br>No. | Depth (relative depth)<br>Soil Micromorphology (SM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Preliminary Interpretation and Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                        |               | <ul> <li>SM – Homogeneous SMT 6a1. <i>Microstructure</i> – massive, fissured, poor prisms, 15% voids, very fine fissures and channels, to medium-size. <i>Coarse Mineral</i> – as below, but with 12mm-size flint flake?; rare blackened root traces (monocot wetland plants?). <i>Fine Fabric</i> –cloudy and finely speckled greyish yellow (PPL), moderate interference colours (very open porphyric, speckled and weakly mosaic and striated b-fabric (grano-striate/embedded grains), XPL), pale grey with white areas (clay depleted/weather coatings and infills); very weakly humic with occasional very fine detrital blackened and brown OM, possible trace amounts of charcoal. <i>Pedofeatures:Textural</i> – occasional intercalations and rare matrix infills (of collapsed voids?). <i>Depletion</i> – very abundant iron depletion throughout; leached/iron depleted fissure and channel hypocoatings (very acid/strong gleying effect).</li> <li>BD (40099): 2.26% LOI, 0.194 mg 1 phosphate-P.</li> </ul> | Iron depleted, very weakly humic clay containing rare detrital<br>fine OM, blackened (organic) monocot? root traces and traces of<br>charcoal. It includes a possible flint flake (12mm). Occasional<br>intercalations and matrix infills, and strongly leached fissure and<br>channel hypocoatings. Bulk analyses record 2.26% LOI, 0.194<br>mg g 1 phosphate-P; Fe-depleted (SEM/EDS).<br><i>Massive iron-depleted lacustrine clay sediments, showing rooting (by<br/>wedand plants – blackened organic monocotyledonous root traces),<br/>and inclusions of derrital OM including trace amounts of very fine<br/>charcoal. Anomalous 12mm size flint fragment and character suggest<br/>it may be a flint flakelof anthropogenic origin; possibly naturally sunk<br/>down in muddy sediments. Strong leaching has affected the sediment,<br/>hence moderate OM preservation and markedly low phosphate<br/>content.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| MFT C2/SMT 5a1                                         |               | <ul> <li>240(275)-295mm</li> <li>Very similar to 40103 in M40150B, with marked concentration of iron staining in uppermost 10mm, as a series and concentrations of 1mm sub-parallel bands (sloping at 45 degrees in thin section sample). These bands and underlying sediment also include very abundant poorly pseudomorphic root traces. In topmost 5mm, 1mm-size rounded clay (soil?) clasts occur with darkish reddish brown finely ganular clay/once-humic soil infilling the voids (often more ferrug-inous). Iron-stained root traces and mottles possibly pseudomorphic of once-humic (now-ferrugnised) soil (burrows and root channels) is present. An atypical 6mm round flint gravel clast is present; trace amounts of void matrans forming from textural intercalations.</li> <li>BD (40103 - Fe pam): 3.63% LOI, 1.77 mg 1 phosphate-P. SEM/EDS : 10 analyses of ironpan and iron depleted zones (Table 5.2)</li> </ul>                                                                                       | 40103 - 6a<br>As below, but with a (sloping?) concentration of iron staining along<br>uppermost 10mm – forming an iron pan. This is partially made up<br>of a concentration once-humic burrows and channel (fills), and in<br>places 1mm-size 'soil' clasts cemented by infills of sometimes<br>strongly ferruginised (once-humic) fine soil (?). Trace amounts of<br>very fine charcoal and a 6mm example of rounded flint gravel.<br>Marked high LOI (3.63%) and enriched phosphate-content (1.77<br>mg g 1 phosphate-P); Fe and P-enriched (SEMEDS).<br><i>Possible ripened sediment/soil surface, showing 1) slight runcation in<br/>places, 2) traces of rooting and small mesofguna burrowing, 3) very<br/>locally eroded and transported ripened soil/sediment clasts, and 4) local<br/>inveash of humic fine soil. This appears to be a possible buried ripened<br/>soil which may have had short-lived usodland (?) cover, before being<br/>affected by inundation and reneved sedimentation (40099). (Genule<br/>inundation caused slaking and structural collapse/formation of inter-<br/>calations and void matrans, and erosion of local soil/sediments, and<br/>invash.) Buried 'topsoil' interpretation is consistent with LOI and<br/>enriched phosphate probably also reflects this and 'geogenic' concentra-<br/>tion of D do so romondentine and succentumenter</i> |
| MFT C1/SMT 5a1                                         | M40150B       | 300-375mm<br>SM – Homogeneous SMT 5a1. <i>Microstructure</i> – massive, crack and relict<br>prismatic, 25% voids, very fine to medium (1mm) curved planar voids and<br>fissures, fine to coarse (2.5mm) extant and relict channels. <i>Coarse Mineral</i> –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tion of 1 due to groundwater movement.<br>Context 40103 (Phase 6d/6c/6a); 6a<br>Massive clay containing small amounts of coarse silt, fine and<br>medium sand. Clay has fissures and relict channels, some with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| _         |
|-----------|
| õ         |
| continued |
| _         |
| Å7.       |
| Ð         |
| Lab       |

| ofacies type (MFT)/ Sample<br>microfabric type (SMT) No. | C:F (Coarse:Fine lim<br>to medium sand, as t<br>possibly very abunda |
|----------------------------------------------------------|----------------------------------------------------------------------|
| Microfacies ty<br>Soil microfabr                         |                                                                      |

Depth (relative depth) Soil Micromorphology (SM)

Preliminary Interpretation and Comments

likely ferruginised (woody) root pseudomorphs (0.5-2.5mm;

C:F (Coarse:Fine limit at 10 µm), 20:80; moderately sorted coarse silt to fine to medium sand, as below. *Coarse Organic and Anthropogenic* – occasional (to possibly very abundant?) ferruginised broad and fine woody(?) root traces (0.5-2.5mm). *Fine Fabric* – SMT 5a1: typically pale yellowish brown (PPL; cf. depleted and iron-stained), moderate interference colours (very open porphyric, speckled and occasionally grano-striate ('embedded grain'), XPL), grey to pale yellow (OIL), very weakly humic with trace amounts of phytoliths. *Pedofeatures: Textural* – occasional textural intercalations, rare channel infill of iron depleted clay (plus partial clay destruction). *Depletion* – very abundant iron depleted clay (plus partial clay destruction). *Depletion* – very abundant iron depleted clay (plus partial clay destruction). *Depletion* – very abundant iron depleted clay (plus partial clay destruction). *Depletion* – very abundant iron depleted clay (plus partial clay destruction). *Depletion* – very abundant iron depleted clay (plus partial clay destruction). *Depletion* – very abundant iron depleted clay (plus partial clay destruction). *Depletion* – very abundant iron depleted clay (plus partial clay destruction). *Depletion* – very abundant iron depleted clay (plus partial clay destruction). Depletion – very abundant iron depleted clay (plus partial clay destruction). *Depletion* – very abundant iron depleted clay (plus partial clay destruction). *Depletion* – very abundant iron depleted clay (plus partial clay destruction). Depletion – very abundant iron depleted clay (plus partial clay destruction). *Depletion* – very abundant iron depleted clay (plus partial clay destruction). *Depletion* – very abundant iron depleted clay (plus partial clay destruction). Depletion – very abundant iron depleted clay (plus partial clay destruction). *Depletion* – very abundant iron depleted clay (plus partial clay destruction). *Depletion* – very abundant iron depleted clay (plus partial clay destruction). Depletion – very

MFT B2/SMT M40151A 70-150mm (finely cracked dried out sample)

3a1(3a3)

SM – Moderately heterogeneous with very dominant iron-stained and irondepleted clayey SMT 3a1 and very few fine and medium sandy SMT 3a3. *Microstructure* – massive (currently very finely fissured), 30% voids, fine fissures. *Coarse Mineral* – C:F, as M40151B, with 3a1, C:F=30:70 containing fine and medium sand. *Coarse Organic and Anthropogenic* – possible traces of rare thin roots. *Fine Fabric* – SMT 3a1 and 3a3, as M40151B. *Pedofeatures* – *Depletion*: many iron-depleted areas; *Amorphous*: very abundant moderate to strong iron staining, strongest staining describes curved 'fill'(?); possible root stains. *Fabric* – 30mm deep by 4.5mm wide curved 'fill'; very broad burrow fills (focus of sands); possible thin weak iron stained burrows.

MFT B1/SMT M40151B 3a1, 3a2, 3a3

320-410mm SM – Heterogeneous with dominant clayey (SMT 3a1), common ferruginous clayey (3a2) and sandy (3a3). *Microstructure* –massive with fissures/crack microstructure (residual bedding and fine laminae); 30% voids, including coarse fissures, but only 20% with fine cracks in matrix; fine channels and vughs. *Coarse Mineral* – C:F, SMT 3a1=10:90 or 30:70 (once laminated silts and clay?), well sorted coarse silt-fine sand quartz, feldspar, mica (opaques include limonite); 3a2, C:F=0/10:100/90 (once-humic?); SMT 3a3, C:F=80/90:20/10, moderately well sorted fine and medium sands; 700 µm –size mica fragment. *Coarse Organic and* 

with traces of very thin ferruginised excrements). Sediment is mottled with iron depleted and iron stained areas and other possible root stains. Some channels have iron-depleted hypocoatings; example of channel with leached/iron-depleted clay fill. 'Basal' lacustrine clay sediments, containing scattered small amounts of coarse silt, fine and medium sand – possibly locally blownin/washed-in. This clay acted as a rooting substrate, possibly for woodland, as suggested by the presence of woody roots (some being dominated by small invertebrate mesofauna). The sediment was also

of coarse sili, fine and medium sand – possibly locally blownin/washed-in. This clay acted as a rooting substrate, possibly for woodland, as suggested by the presence of woody roots (some being dominated by small invertebrate mesofauna). The sediment was also affected by shrinking and swelling (an effect of woodland growth?), marked iron depletion (and possibly clay break down at times) and iron staining – hydromorphic/gleying effects. Enigmatic high measurements of LOI possibly relate to woody root traces, while enhanced P is probably secondary and linked to iron-staining.

Upper-context 40039 (Sub-phase 6a)

(Overlying 40103 partially occurs as strongly iron-depleted clay in uppermost 20mm)

Massive non-calcareous clay sediments (with few sand inclusions), with marked iron-staining, with a infill features, burrows, once humic peds and excrements, demarcated by strong ironstaining. Sands are only present in rare broad burrow fills. Clays seemingly less humic compared to lower down, and only very fine charred/blackened detrital OM noted.

A minerogenic wetland clayey sediment appears to have developed as a topsoil (hydroseral succession?), with burrows, peds, roots and excrements of relatively humic soil showing marked iron impregnation. Overlying iron-depleted 40103 is probably a flood clay.

40039 (Sub-phase 6a)(Basal clay etc)

Part layered, part coarsely mixed non-calcareous clays, silty clay, fine and medium sands and ferruginised once-organic sediment; silty clays are composed of mixed silt and clay fine laminae. Charcoal as both rare fine (eg. max 800 µm-size monocot charcoal) and occasional very fine material occurs alongside very fine blackened (detrital OM), and phytoliths are present; patches of totally ferruginised organic matter including plant fragment

| $\sim$        |
|---------------|
| 6             |
| D             |
| ne            |
| <u>.</u>      |
| Ę             |
| 8             |
|               |
| ٣             |
| <u> </u>      |
| A7.1 (6       |
| e A7.1 (c     |
| ble A7.1 (    |
| Table A7.1 (d |

| Sample          | No.              |
|-----------------|------------------|
| e (MFT)/        | c type (SMT)     |
| Microfacies typ | Soil microfabric |

Depth (relative depth) Soil Micromorphology (SM)

Preliminary Interpretation and Comments

 $4nthropogenic - \sim 350$  µm-size charcoal fragments (eg of 800 µm-size monocot and finer, trace in lower part becoming rare alongside occasional upwards alongside very fine blackened detrital material (uppermost clay layer); trace amounts of blackish and reddish brown humified peat including 1mm-size fragment. Fine Fabric - SMT 3a1: cloudy very pale brownish grey (PPL), moderately low interference colours (open porphyric, stipple speckled with striated bfabric, XPL), grey (OIL - iron-stained areas are orange to brown), occasional to many very fine blackened detrital, and charred OM, trace of brownish amorphous ated with embedded grains and void coatings and infills (matrans 150-200 µm chick; some stained yellowish - see amorphous). Depletion - occasional strongly iron depleted zones; Amorphous: rare amounts of weak yellowish staining and possibly associated sand size yellowish, isotropic nodules embedded within same matrix (FeP?); very abundant moderate to strong iron impregnation of fine clayey matrix and once-organic sediment, with fine iron nodules (~30 µm), granular or pseudomorphs? some as poor pseudomorphs of plant material/roots, possibly OM; phytoliths present. Pedofeatures: Textural – many textural intercalations, associ-SEM: 17 analyses of iron-depleted and iron-stained areas (Table 5.2). relict iron/sodium carbonate? Fabric - very abundant coarse fabric mixing. BD (40039): 1.88% LOI, 0.556 mg g 1 phosphate-P charcoal?)

D2/SMT 4a2 M40323A

0-70mm

SM – Homogeneous SMT 4a2. *Microstructure* – massive, diffuse <1mm thick laminae upwards, with embedded/cemented 0.5mm-size subrounded clasts in uppermost 5mm; 10% voids, very thin fissures, channels and vughs. *Coarse Mineral* – as below, but very coarse sand and gravel-free. *Coarse Organic and Anthropogenic – Fine Fabric*: SMT 4a2: speckled and cloudy darkish yellowish brown (PPL), moderate interference colours (close porphyric, speckled and grano-striate b-fabric, XPL), very pale yellowish grey (OIL), generally very weakly humic with rare very fine OM, but upwards 'humic pans'(?) of nowferruginised; trace amounts of phytoliths. *Pedofeatures: Textural* – as below, with matrix pans upwards associated with laminae; *Depletion* – strongly irondepleted fine matrix. *Amorphous* – abundant iron impregnation associated with relict fine rooting and once-humic <1mm-thick pans (thin iron panning).

pseudomorphs occur (current LOI is 1.88%). Sediments also characterised by textural intercalations and associated matrix embedded grains and matrix void coatings, some stained yellow; rare fine sand-size yellow isotropic nodules/infills are probably iron phosphate formations (see EDS Table 5.2; sediment characterised by slight phosphate enrichment, 0.556 mg g 1 phosphate-P).

Once bedded and laminated weakly humic clays, silts, and occasionally medium sands, with patches (inclusions) of peat(?), now ferruginised with plant pseudomorphs; wetland (marsh) locally burned monocotyledonous vegetation(?). Fabric mixing and associated intercalations, matrix coatings, and yellow staining and nodule formation (FeP), alongside slight phosphate enrichment may infer animal trampling and defecation.

(Context 40039 Upper (Tufaceous channel), Phase 6b/6a); 6a Massive, moderately well sorted clayey fine and medium sand, with in the main strongly iron-depleted fine fabric, which is generally very weakly humic, but appears, upwards, to have a series of thin (<1mm) once-humic (now-iron-replaced) pans. There are trace amounts of phytoliths present. In uppermost 5mm a scatter of 0.5mm-size clay clasts occur. Iron also picks out many traces of probable fine rooting and voids around these clasts. The diffuse boundary to 40070 is marked by intercalated and curved thin ironpans and iron stained burrows; clay infills some burrows and channels. *Moderately low becoming low energy fine and medium sandy collavial* 

Moderately low becoming low energy fine and medium sandy colluvial deposition, marked by thin rooting and periodic organic matter accumulation (seasonal very thin peat formation?). Lastly inwash of eroded clay clasts is recorded. This all occurred under waterlogged conditions (hence iron depletion and organic matter panning), perhaps as the channel silted up(?). The sediment was affected by secondary but penecontemporaneous iron staining.

| Table A7.1 (continued 1                                | (0              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Microfacies type (MFT)/<br>Soil microfabric type (SMT, | Sample<br>) No. | Depth (relative depth)<br>Soil Micromorphology (SM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Preliminary Interpretation and Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                        |                 | Diffuse boundary from 40039 Upper to 40039 Middle at ∼60mm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | The ironpans along the diffuse boundary pick out micro gullying<br>and erosion, typical of some Pleistocene brickearth deposits; clay<br>has washed down from overlying contexts into later burrows and<br>channels.<br>Context 40039 Middle as below in M40323B                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MFT D1/SMT 4a1                                         | M40323B         | 70-130 mm<br>SM – mainly homogeneous fine and medium sandy SMT 4a1, with few<br>subhorizonal intercalations of clayey SMT 4a1. <i>Microstructure</i> – massive, with<br>fine bedding laminations and clayey intercalations; 20% voids, fine vugbs and<br>channels (root traces?). <i>Coarse Mineral</i> – C:F, 80:20, moderately sorted fine<br>and medium sand-size quartz, quartzite, feldspar and mica, with very few<br>coarse sand and gravel (2-2.5mm; quartzite and 3mm flint – trace of clay-<br>coating/embedded grain, traces of rubefication/calcination); very few<br>glauconite. <i>Coarse Organic and Anthropogenic</i> – possible traces of burning on<br>flint gravel; Fine Fabric: SMT 4a1, as SMT 3a1 – see M40151B, granostriate<br>b-fabric, with only rare very fine amorphous OM and trace amounts of very<br>fine charcoal. <i>Pedofeatures: Textural</i> – occasional clayey intercalations (cf<br>grano-striate), void infills. <i>Amorphous</i> – rare iron staining of relict rare very<br>broad burrows/channels (edge only in thin section) and sediment layer<br>hypocoatings. <i>Fabric</i> – abundant traces of very broad burrowing (6+mm),<br>with curved infills associated with penecontemporaneous clay inwash. | Context 40039 Middle (Tufaceous channel), (Phase 6b/6a); 6a<br>Massive, moderately well sorted clayey fine and medium sand<br>(very few fine gravel), with relict sedimentary laminae, traces of<br>very broad burrows and penecontemporaneous clayey inwash<br>and intercalation and grano-striate formation. Clayey intercala-<br>tions may show evidence of rooting – preferential channel forma-<br>tions. Rare iron staining (of edge of very broad burrow?) and<br>sedimentary laminae hypocoatings.<br>Moderately low energy muddy fine and medium sandy colluvial<br>deposition, with penecontemporaneous very broad burrowing and<br>clayey infilling. Minor secondary iron staining. |
|                                                        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# Appendix 8

# Site sequence geometry and sub-surface structural geology

#### by John Hutchinson

#### The Site

The site is a rescue dig associated with roadworks for the HS1 rail network. It is situated around Grid Ref. TQ 613 732 on the Upper Chalk. The classic Swanscombe Pleistocene exposures lie between 1.2 and 2.5km to the north and north-west.

The 'solid' strata in the vicinity are, in upwards order:

- 1. The Upper Chalk, which everywhere underlies the site (dip within a couple of degrees of the horizontal)
- 2. The Thanet Beds, with the Bullhead Bed at their base
- 3. The Woolwich Beds
- 4. The Blackheath Beds
- 5. The London Clay that caps the hill in Swanscombe Park 1km west of the site.

The Quaternary here has not yet been fully logged and worked out. The interim names of units currently used on site (very broadly in upwards order) are:

- A. Soliflucted Chalk (Coombe Rock)
- B. Reworked Thanet Beds
- C. Lacustrine deposits
- D. Reworked fine sands and silty clays with a few pebbles, probably derived largelyfrom the Thanet, Woolwich and Blackheath Beds
- E. Gravels and sands (apparently little disturbed by the disturbances describedbelow), possibly from a braided river
- F. Soliflucted London Clay and associated head

The 1:50,000 geological map shows a terrace of Boyn Hill Gravel about 1.5km NNW of the site and Alluvium at its foot. The relationships of these and the classic sections at Swanscombe to the geological exposures on the Southfleet Road site have yet to be established.

The main exposures seen, from the site office, northwards towards the newly diverted access road are:

- a. Small exposure of soliflucted Chalk, overlain by B (above)
- b. Rotated block of intact Chalk with contiguous Bullhead Bed and Thanet Beds. Dip of contact (bedding) very steeply (probably 70 to 800 northwards.
- c. In cut slope to W, various (unlogged) reworked materials, probably including London Clay

- d. In area to the east of c) excellent exposures of a double basin structure, rather fully exhumed, with additional cross trenches. The best exposed basin (to the W) is delineated by a layer of C. Its infill, chiefly D overlain by E, has been largely removed by archaeological excavations. This basin is about 16m across, with a depth (amplitude) of about 3m. The axes of this and the other basin run roughly nort-south. The basins are slightly asymmetrical, with steeper dips on their western limbs. The maximum dips in these approach the sub-vertical. The southern trench allows a good view of the basins in cross section. They are very regular, apart from some secondary undulations, and are virtually unbroken by faults. The deformed clayey layer, C, is continuous across each basin and is underlain by a compact fine sand, probably B. Each basin appears to be elongated in roughly a N-S direction and to peter out at each end. Towards the north end of the eastern basin apparent loading structures were seen. These are of very small scale, around 2m across, in comparison with the two basin structures.
- e. We also looked at a new road cutting to the SW of the main site. Soliflucted London Clay is exposed its south face.

No plans, face logs or sections, or drawings showing their general inter-relationships, were seen during the visit; these were currently being produced.

#### Possible origins of the above features

Dips in the solid geology of the central and eastern parts of the London Basin are very low, generally not exceeding a few degrees. Against this background, the high dips observed in some of the Southfleet Road excavations, both in the Chalk and in the overlying Pleistocene deposits, are remarkable and apparently anomalous.

The main processes in southern England which can produce steep dips are reviewed briefly below:

#### Tectonics

Dips in the Chalk as high as 55° occur on the southern limb of the London Basin at the Hog's Back (Sumbler 1996) and, further south, approach the vertical on the south side of the Hampshire Tertiary Basin in the Isle of Wight. The chief features against the double basin at our site being of structural origin is its location in an area of subhorizontal dip, its very local nature and the apparent absence of hinge structures between the two basins.

#### Superficial valley disturbances

A wide variety of superficial valley disturbances exists, which is reviewed by Hutchinson (1991; 1992). These can produce local dips of 70° or more in valley bulges and are widely distributed in the Jurassic outcrop of central England and in the Weald (Hutchinson 1992). However, they require the valley to be underlain by a thick argillaceous stratum.

The absence of such a stratum beneath the Southfleet Road site, its location away from the axis of the local valley and the very local nature of the observed anomalous features rule out an explanation depending upon the above mechanisms.

#### Pingos

Relict pingos, chiefly of open type and generally (but not always) more or less circular or oval in plan, are common in southern England and Wales. Some are reported to have diapiric structures in their lower parts that can result in steep dips. Pingos are frequently found in clusters towards the foot of slopes, particularly if artesian groundwater pressure is present.

While some of these criteria may be fulfilled at Southfleet Road, the continuity of the beds, especially B and C, across the basins and the absence of boggy, peaty infills argue strongly against a pingo origin.

#### Landsliding

Pressure exerted by the toe of a landslide can produce deformation, folding and faulting of its lower parts and of the resisting ground. An example at Lyme Regis is described by Hutchinson and Hight (1987), but the effects extend no more than about 5m below ground level.

To judge better whether a slide sufficiently deepseated to affect the area of the basins could have occurred at our site, one should draw a W - E section through areas c and d, picking up the basin structures and the geology and showing as far as possible the original natural ground surface. My impression on site was that, apart from the London Clay, most of the deposits overlying the Chalk are firm and granular and difficult to develop a major slide in which could penetrate down to or below the level of the basins. Furthermore, no slip surfaces were seen there and the basin structures themselves do not correspond to the passive style that one would expect in a slide toe area.

#### Frost-heave and periglacial solifluction

While both these processes can result in considerable deformation of the ground, they are too shallow to explain the Southfleet Road structures.

#### Solution of the Chalk

Solution pipes, swallow holes and solution dolines are numerous in the Chalk, especially around the margin of London Clay capped hills (the umbrella effect). The work of Higginbottom and Fookes (1970) and Jones (1981) indicate that the extent and magnitude of solution effects in the Chalk have been underestimated. The former authors report an apparent concentration of solution features on the route of the M40 motorway through the Chilterns, which in some cases are underlain by linear depressions in the Chalk surface as deep as 15m below the general Chalk surface level. The latter author reports particularly severe solution beneath a cover of Blackheath Beds around the southern outskirts of London and a concealed, irregular rockhead on the North Downs and, to a lesser extent, the Chiltern Hills. He concludes that the high, steep-sided pinnacles of Chalk often found beneath the Blackheath Beds and the well-known pipes exposed at Lenham represent rather dramatic examples of solutional forms widely developed on chalklands with a thin cover of superficial deposits. Good reviews of karst development and subsidence on the Chalk outcrop in England are provided by Edmonds (1983; 1988).

Both this background and the detailed local geology point to the solution of Chalk as by far the most likely mechanism producing the exposures b and d. In the former case it is not abnormal to have two solution features adjoining each other or for them to have a linear tendency. It will be interesting to see if this parallels a regional joint direction in the Chalk. In the latter case it is suggested that the exposure represents a fallen karstic pinnacle of Chalk capped by the lower Thanet Beds. The intact nature of the Chalk/Thanet beds contact may indicate that the ground was frozen at the time of collapse (the maximum depth of permafrost here is estimated by Hutchinson (1991) to lie between about 30 and 60m).

If the above conclusions are correct, the surface of the Chalk bedrock should be highly irregular. This should be checked by geophysics and/or closely spaced borings.

# Appendix 9

# Amino acid dating

by Kirsty Penkman, Victoria Morris and Richard Allen

#### INTRODUCTION

Advances in Quaternary Science during the past few decades, particularly with respect to absolute dating methods and the correlation of terrestrial stratigraphic sequences with oxygen isotope records (ie major climatic signals) interpreted from the geochemical analysis of deep sea sediment cores, have provided an opportunity to develop a high resolution chronology of human occupation and activity over the past 600,000 years or so. This report details attempts to obtain age estimates using amino acid racemization (AAR).

Amino acid analyses were undertaken at the York Laboratory (NEaar) from key horizons. This involves isolating the intra-crystalline protein fraction of two biominerals: the calcitic opercula from the fluvial gastropod *Bithynia tentaculata*, for which an excellent and growing database of protein degradation data has recently been assembled (Penkman *et al.* 2008b). This laboratory has been developing an improved methodology for the technique, and studies are ongoing to calibrate the amino acid data with reference to other dating techniques.

#### Amino acid racemization geochronology

A new technique of amino acid analysis has been developed for geochronological purposes (Penkman 2005; Penkman et al. 2007; 2008), combining a new Reverse-Phase High Pressure Liquid Chromatography method of analysis (Kaufman and Manley 1998) with the isolation of an 'intra-crystalline' fraction of amino acids by bleach treatment (Sykes et al. 1995). This combination of techniques results in the analysis of D/L values of multiple amino acids from the chemically-protected protein within the biomineral; enabling both decreased sample sizes and increased reliability of the analysis. Amino acid data obtained from the intra-crystalline fraction of the calcitic Bithynia opercula has been found to be a particularly robust repository for the original protein. This has enabled an increased level of resolution and therefore this material has been focused on in this study.

# Theory

Amino acids, the building blocks of proteins, occur as two isomers that are chemically identical, but optically different. These isomers are designated as either D (dextrorotary) or L (laevorotary) depending upon whether they rotate plane polarised light to the right or left respectively (Fig. A9.1). In living organisms the amino acids in protein are almost exclusively L and the D/L value approaches zero. D-amino acids are synthesised by some organisms; they are found free in invertebrate body fluids where they play a role in osmoregulation and can occur peptide bound in bacterial peptidoglycan, where part of their function is resistance to proteases. The potential application to geochronology arises from the fact that after death amino acid isomers start to interconvert. This process is commonly termed racemization. In time the D/L value approaches one. The proportion of D to L amino acids is therefore an estimate of the extent of protein degradation, and if this is assumed to be predictable over time can be used to estimate the age of a sample. Other indications of protein decomposition, such as the degradation of unstable amino acids, can also be used to estimate age.



Figure A9.1 Figure 1: L- and D- amino acid structure

# Mechanisms of racemization

The rate of racemization is governed by a variety of factors, most of which have been studied in detail only for free amino acids. North East amino acid racemization (NEaar) analyse the intra-crystalline amino acid fraction and in this way, within a closed environment in which other factors (water content, concentration of cations, pH) are constant, the extent of racemization is a function of time and temperature. Over a small geographical area, such as that represented in this study, it can be assumed that the integrated temperature histories are effectively the same. Any differences in the extent of decomposition of protein within the sample are therefore age-dependent.

#### Intra-crystalline protein decomposition

The organic matter existing within individual crystals (intra-crystalline fraction) is believed to be a more reliable substrate for analysis than the whole shell (Sykes et al. 1995; Penkman 2005; Penkman et al. 2008). The initial bleaching step in the recovery of the intracrystalline fraction removes both secondary contamination and the organic matrix of the shell. This organic matrix degrades and leaches at an unpredictable rate over time, leading to variation in the concentration and D/L of the amino acids. Thus, as appears to be the case in ostrich eggshell (Miller et al. 2000), the D/L values of amino acids in the intra-crystalline fraction of shells have been analysed; in the case of ostrich eggshell no bleaching step was used. The molluscan racemization data reported therefore contrasts with previous work that examined D/L values from whole mollusc shells containing both intra- and inter-crystalline material.

This isolation of the intra-crystalline fraction is believed to provide a closed system repository for the amino acids during the burial history of the shell. Only the amino acids within this fraction are protected from the action of external rate-affecting factors (except temperature), contamination by exogenous amino acids and leaching. Amino acids within the whole shell are not protected and can be leached out into the environment. Figure A9.2 shows a schematic of the intra-crystalline fraction with respect to the whole shell. The low level of Free amino acids observed in the inter-crystalline fraction of unbleached samples (Penkman *et al.* 2007) indicates that these have been lost through diagenesis, and as these tend to be more highly racemised than the Total fraction, this loss would lead to a lower than expected D/L for the Total fraction of the whole shell.

Traditionally AAR studies targeted a single amino acid racemization reaction, that of L-isoleucine to Dalloisoleucine (A/I), due to the technical ease of separation and its slow rate of racemization. The approach used in this study diverges from this, as dates are derived from the analysis of multiple amino acids. Whilst racemization rates differ between individual amino acids, they should be highly correlated in a closed system. By linking together different amino acids, and then linking this to a temperature driven model of decay, which includes hydrolysis, racemization and degradation, the extent of protein degradation can be derived. The pattern of decomposition appears to be different between mollusc genera, requiring separate models for each genus or species studied.

Once a closed system inside mollusc shells has been isolated, then the kinetics of protein decomposition are much simpler to predict. In this laboratory the concept of age estimation using the extent of overall Intracrystalline Protein Degradation (IcPD) has been devised, which links the hydrolysis, racemization and decomposition of all the amino acids isolated by this method. The concept behind the IcPD is to combine multiple information from a single sample to derive an overall measure of the extent of diagenesis of the protein in that fossil. Similar ideas have been used before, although not in such a comprehensive way (Wehmiller *et al.* 2010). Divergence from the normal in a plot of A/I vs Gly/Ala is thought to indicate leaching in molluscs (Murray-Wallace and Kimber 1987). Kaufman (2000)



Figure A9.2 Schematic of intra-crystalline amino acids entrapped within carbonate crystallites. Unlike the proteins of the organic matrix between the crystallites, which leach from the shell with time, in a closed 'intra-crystalline' system the amino acids are entrapped. Thus the relationship between the DL ratios of different amino acids and between free (non-protein bound) and total (both free and originally protein-bound amino acids, released by acid hydrolysis) amino acids is predictable. Analysis of the whole shell would result in lower than expected D/L for the total fraction, due to the loss of the more highly racemised frees.

used ratios of Asx to Glx to screen out samples with any unusual values.

In a closed system, it should be possible to predict the relationship between geological time and IcPD increase, using not just racemization but other measures of protein decomposition, such as total and relative concentrations. It follows from the innovations above that, assuming sampling is from an idealised closed system, the pattern of protein decomposition governs the observed racemization of (a) free amino acids and (b) the total system, (c) the percentage of free amino acids and (d) the total concentration of amino acids.

This model can also be used as a method of assessing the internal reliability of each biomineral used and to determine how closely these substrates approximate to a closed system. Subsequently palaeotemperature information can be included and estimates made of the link between degradation and absolute age in environments with fluctuating temperatures. If an accurate temperature model is used, then age estimates can be derived directly from the IcPD data, although the results presented here do not incorporate any palaeotemperature information and are presented simply as a relative dating tool.

## MATERIALS AND METHOD

Amino acid racemization (AAR) analyses were undertaken on *Bithynia tentaculata* opercula:

- Two individual opercula from Southfleet Road, context 40078, <40275>, Bulk SV sample (NEaar 6433-4; SFR4Bto1-2)
- Three individual opercula from Southfleet Road, context 40143, <40282/C/0-2>, mollusc subsample from monolith (NEaar 6430-2; SFR3Bto1-3)
- Three individual opercula from Southfleet Road, context 40144, <40295/C>, mollusc subsample from bulk SV sample (NEaar 6435-7; SFR5Bto1-3)
- Three individual opercula from Southfleet Road, context 40144, <40333>, bulk SV sample (NEaar 6438-40; SFR6Bto1-3)
- Eleven individual opercula from Southfleet Road, context 40070, <40315/C>, mollusc subsample from bulk SV sample (NEaar 6424-6, 6606-6613; SFR1Bto1-11)
- Three individual opercula from Southfleet Road, context 40070, <40317/C>, mollusc subsample from bulk SV sample (NEaar 6427-9; SFR2Bto1-3)
- Seven individual opercula from Southfleet Road, context 40070, <40162>, bulk SV sample (NEaar 2041-7; EbABto1-7)
- Two individual opercula from Southfleet Road, context 40103, <40320>, bulk SV sample (NEaar 6441-2; SFR7Bto1-2)
- Two individual opercula from Southfleet Road, context 40025, <40286>, bulk SV sample (NEaar 6443-4; SFR8Bto1-2)
- · Two individual opercula from Southfleet Road,

context 40025, <40343>, bulk SV sample (NEaar 6445-6; SFR9Bto1-2)

 Fourteen individual opercula from Southfleet Road, context 40062, < 40042>, bulk SV sample (NEaar 6166-7, 6447-9, 6534-6538, 6614-6616; SRA1Bto1-2 and SFR10Bto1-12)

#### Sample Preparation

Shells were examined under a low powered microscope and any adhering sediment removed. The shell samples were then sonicated and rinsed several times in HPLCgrade water. The shells were then crushed to  $<100\mu m$ . Only bleached samples were analysed.

#### Bleaching

50µl of 12% solution of sodium hypochlorite at room temperature was added to each milligram of powdered sample and the caps retightened. The powders were bleached for 48 hours with a shake at 24 hours. The bleach was pipetted off and the powders were then rinsed five times in HPLC-grade water and a final rinse in HPLC-grade methanol (MeOH) to destroy any residual oxidant by reaction with the MeOH. The bulk of the MeOH was pippetted off and the remainder left to evaporate to dryness.

#### Hydrolysis

Protein bound amino acids are released by adding an excess of 7 M HCl to the bleached powder and hydrolysing at  $110^{\circ}$ C for 24 hours (H\*).

 $20\mu$ l per milligram of sample of 7 M Hydrochloric Acid (HCl) was added to each Hydrolysis ('Hyd', H\*, THAA) sample in sterile 2ml glass vials, were flushed with nitrogen for 20 seconds to prevent oxidation of the amino acids, and were then placed in an oven at 110°C for 24 hours. After 10 minutes in the oven, the caps of the 2ml vials were re-tightened to prevent the escape of vapour. After 24 hours, the samples were dried in a centrifugal evaporator overnight.

#### Demineralisation

Free amino-acid samples ('Free', F, FAA) were demineralised in cold 2M HCl, which dissolves the carbonate but minimises the hydrolysis of peptide bonds, and then dried in the centrifugal evaporator overnight.

#### Rehydration

When completely dry, samples were rehydrated with  $10\mu$ l per mg of Rehydration Fluid: a solution containing 0.01 mM HCl, 0.01 mM L-homo arginine internal standard, and 0.77 mM sodium azide at a pH of 2. Each vial was vortexed for 20 seconds to ensure complete dissolution, and checked visually for undissolved particles.

Approximately  $20\mu$ l of rehydrated sample was then placed in a sterile, labelled 2 ml autosampler vial containing a glass insert, capped and then placed on the autosampler tray of the HPLC.

For each set of sub-samples a blank vial was included at each stage to account for any background interference from the bleach, acid, or rehydration fluid added to the samples.

#### Analysis of Free and Hydrolysed Amino Acids

Amino acid enantiomers were separated by Reverse Phase High Pressure Liquid Chromatography (RP-HPLC). NEaar uses the method of Kaufman and Manley (1998) using an automated RP-HPLC system. This method achieves separation and detection of L and D isomers in the sub- picomole range.

Samples (2µl) were derivitised with 2.2µl *o*-phthaldialdehyde and thiol *N*-isobutyryl-L-cysteine automatically prior to injection. The resulting diastereomeric derivatives were then separated on Hypersil C<sub>18</sub> BDS column (sphere d. 5µm; 250 x 3mm) using a linear gradient of a sodium acetate buffer (23 mM sodium acetate, 1.3 mM Na<sub>2</sub>EDTA; pH6), methanol, and acetonitrile on an integrated HP1100 liquid chromatograph (Hewlett-Packard, USA).

Individual amino-acids are separated on a non-polar stationary phase according to their varied retention times: a function of their mass, structure, and hydrophobicity. A fluorescence detector is used to determine the concentrations of each amino-acid and record them as separate peaks on a chromatogram. A gradient elution programme was used to keep the retention time to below 120 minutes.

The fluorescence intensity of derivitised amino acids was measured (Ex = 230 nm, Em = 445 nm) in each sample and normalised to the internal standard. All samples were run in duplicate. Quantification of individual amino acids was achieved by comparison with the standard amino acid mixture.

External standards containing a variety of D- and Lamino acids, allowing calibration with the analyte samples, were analyzed at the beginning and end of every run, and one standard was analyzed every ten samples. Blanks which had been subjected to identical preparation procedures were randomly interspersed amongst the standards.

The L and D isomers of 10 amino acids were routinely analysed. During preparative hydrolysis both asparagine and glutamine undergo rapid irreversible deamination to aspartic acid and glutamic acid respectively (Hill 1965). It is therefore not possible to distinguish between the acidic amino acids and their derivatives and they are reported together as Asx and Glx.

#### **RESULTS AND DISCUSSION**

In total we conducted 208 analyses, all of which were on bleached samples. The extent of racemization in five amino acids (D/L of Asx, Glx, Ser, Ala and Val), along with the ratio of the concentration of Ser to Ala ([Ser]/[Ala]), are reported for both the Free and Hyd fractions. These indicators of protein decomposition have been selected as their peaks are cleanly eluted with baseline separation and they cover a wide range of rates of reaction. It is expected that with increasing age, the extent of racemization (D/L) will increase whilst the [Ser]/[Ala] value will decrease, due to the decomposition of the unstable serine.

The data obtained from Asx, Glx, serine (Ser), alanine (Ala) and valine (Val) are discussed in detail below. If the amino acids were contained within a closed system, the relationship between the Free and the Hyd fractions should be highly correlated, with non-concordance enabling the recognition of compromised samples (Preece and Penkman 2005). The plot of Free to Hyd data from each sample can also be used as a relative timescale, with younger samples falling towards the bottom left corner of the graph and older samples falling towards the upper right corner, along the line of expected decomposition. The data from the Southfleet Road samples have been plotted in this way below for each of the amino acids, with crosshairs representing the data obtained from other MIS 5e, MIS 7, MIS 9 and MIS 11 sites from the UK with independent geochronology. During hydrolysis the Hyd vials of two of the samples from context 40062, <40042> cracked, and so no Hyd data is available for these two samples

From the majority of horizons, 2-3 individual opercula were analysed, but two horizons were analysed in more detail: Phase 3 (context 40070, <40162>) and Phase 6 (context 40070, < 40315/C>) to test the ability of the opercula samples to resolve between the different phases of the site.

The samples from context 40062, <40042>, were particularly friable, with several disintegrating during the initial rinsing step to clean the opercula. As the figures below show, four of the eleven samples analysed from this horizon showed much lower than expected THAA D/Ls, clear evidence of a compromised closed system. One of the context 40070, <40315/C> samples also showed this behaviour. In the analysis of nearly 500 opercula samples, less than 2% of opercula analysed were compromised, so it is extremely unusual to have so many from one horizon. The friability of the opercula from this horizon indicates that mineral diagenesis has occurred in at least some of these samples. The total data set is shown in the Free vs Hyd plots below, but the compromised samples are removed from the statistical analysis to avoid skewing the data.

#### Aspartic acid / Asparagine (Asx)

Asx is one of the fastest racemizing of the amino acids discussed here (due to the fact that it can racemise whilst still peptide bound; Collins *et al.* 1999). This enables good levels of resolution at younger age sites, but decreased resolution beyond MIS 7.

The D/L Asx data from Southfleet Road have very similar values to each other, and to those from sites correlated with MIS 9 and MIS 11 (Fig. A9.3). Other than the compromised samples from context 40062, sample 40042, there is one outlying sample from context



Figure A9.3 D/L Hyd vs D/L Free for Asx in *Bithynia tentaculata* opercula from Southfleet Road. The error bars represent two standard deviations about the mean for data obtained from opercula from sites correlated with MIS 5e, MIS 7, MIS 9 and MIS 11.





Figure A9.5 D/L Hyd vs D/L Free for Glx in *Bithynia tentaculata* opercula from Southfleet Road. The error bars represent two standard deviations about the mean for data obtained from opercula from sites correlated with MIS 5e, MIS 7, MIS 9 and MIS 11.

40070, <40315/C> (NEaar 6612, SFR1Bto10), which falls away from the expected line of decomposition in the Free vs Hyd plot. The amino acid composition of this sample was also divergent, and this sample does not therefore show closed system behaviour.

As the Asx racemization is so near equilibrium, it is surprising that a degree of behaviour consistent with the stratigraphic order is apparent, with the youngest (SFR4; context 40078, <40275>) and oldest (SFR10; context 40062, <40042>) distinguishable (Fig. A9.4). As can be seen from the lower figures, the samples from Phase 3 (context 40062, <40042>) are significantly higher than those from Phase 6 (context 40070, <40315/C>).

# Glutamic Acid / Glutamine (Glx)

Glx is one of the slower racemizing amino acids discussed here and so the level of resolution from young

sites is less than that seen with faster racemizing amino acids such as Asx. However, the low levels of racemization do help discriminate between material of Middle Pleistocene age. It is noteworthy that Glx has a slightly unusual pattern of racemization in the free form, due to the formation of a lactam (see Walton 1998). This results in difficulties in measuring Glx in the Free form, as the lactam cannot be derivitised and is therefore unavailable for analysis.

The Glx D/L values from Southfleet Road show values within the range of those expected from sites of MIS 9 and MIS 11 age (Fig. A9.5). Sample SFR1Bto10 also shows divergent behaviour in this amino acid.

While the Free Glx D/L is very variable in the EbA samples (context 40070, <40162>), this amino acid does show some increase in extent of racemization in concordance with the stratigraphy (Fig. A9.6), again enabling resolution between S1 (Phase 6) and S10 (Phase 3).

Figure A9.4 (facing page) Free (left) and Hyd (right) D/L for Asx in *Bithynia tentaculata* opercula from Southfleet Road, plotted in stratigraphic order. For each group, the base of the box indicates the 25th percentile. Within the box, the solid line plots the median and the dashed line shows the mean. The top of the box indicates the 75th percentile. Where more than 9 data points are available, the 10th and 90th percentiles can be calculated (shown by lines below and above the boxes respectively). The results of each duplicate analysis are included in order to provide a statistically significant sample size The lower figure shows the data for the two horizons studied in greater detail: S10 from Phase 3 (Context 40062, sample 40042) and S1 from Phase 6 (Context 40070, sample 40315/C). Note different scales on the y-axes.



Figure A9.6 Free (left) and Hyd (right) D/L for Glx in *Bithynia tentaculata* opercula from Southfleet Road, plotted in stratigraphic order. For the full legend see Figure A9.4.Note different scales on y-axes



Figure A9.7 D/L Hyd vs D/L Free for Ala in *Bithynia tentaculata* opercula from Southfleet Road. The error bars represent two standard deviations about the mean for data obtained from opercula from sites correlated with MIS 5e, MIS 7, MIS 9 and MIS 11.



Figure A9.8 Free (left) and Hyd (right) D/L for Ala in *Bithynia tentaculata* opercula from Southfleet Road, plotted in stratigraphic order. Note different scales on y-axes



Figure A9.9 D/L Hyd vs D/L Free for Val in *Bithynia tentaculata* opercula from Southfleet Road. The error bars represent two standard deviations about the mean for data obtained from opercula from sites correlated with MIS 5e, MIS 7, MIS 9 and MIS 11



Figure A9.10 Free (left) and Hyd (right) D/L for Val in *Bithynia tentaculata* opercula from Southfleet Road, plotted in stratigraphic order. Note different scales on y-axes





Figure A9.12 Free (left) and Hyd (right) [Ser]/[Ala] in *Bithynia tentaculata* opercula from Southfleet Road, plotted in stratigraphic order. As the [Ser]/[Ala] value decreases with increasing protein decomposition, the axes of this plot has been reversed so that the direction of protein decomposition is the same as that for the D/L graphs. Note different scales on y-axes

# Alanine

Alanine (Ala) is a hydrophobic amino acid, whose concentration is partly contributed from the decomposition of other amino acids (notably serine). Ala racemises at an intermediate rate, so is one of the most useful amino acids for distinguishing samples at these timescales. The Ala data shows a tight clustering of data, consistent with a correlation with MIS 11 (Fig. A9.7) clearly enabling discrimination from sites of MIS 9 age. The two samples from S10 which fall within the MIS 9 cluster are those that show clear evidence in the other amino acids of being compromised. There is however little discrimination within the site using this amino acid (Fig. A9.8).

#### Valine (Val)

Valine has extremely low rates of racemization, and as the concentration of Val is quite low, the difficulty of measuring the D/L accurately results in higher variability. It does however still prove useful for age discrimination within material of Middle Pleistocene age. The Val D/L in the Free and the Hyd fractions again support the other amino acid data (Fig. A9.9). Only in the Hyd fracton is discrimination within the site possible using Val (Fig. A9.10).

# [Serine]/[Alanine]

The ratio of the concentrations of serine and alanine provides an extremely useful tool for age estimation.

Figure A9.11 (facing page) [Ser]/[Ala] Hyd vs Free in Bithynia tentaculata opercula from Southfleet Road. The error bars represent two standard deviations about the mean for data obtained from opercula from sites correlated with MIS 5e, MIS 7, MIS 9 and MIS 11. As the [Ser]/[Ala] value decreases with increasing protein decomposition, the axes of this plot has been reversed so that the direction of protein decomposition is the same as that for the D/L graphs, with younger samples falling to the bottom left corner and older samples falling to the top right corner of the graph

Serine is a very unstable amino acid, and it can degrade via dehydration into alanine (Bada *et al.*, 1978). As the protein within a sample breaks down, the concentration of serine will decrease with an increase in the concentration of alanine, thus the [Ser]/[Ala] value will decrease with increasing time. In order to ease the interpretation, the y-axes in Figure 11 are plotted in reverse, so that the direction of increase in protein degradation is the same as for the racemization graphs.

The [Ser]/[Ala] of the Southfleet Road samples are again consistent with an age in MIS 11, but the level of discrimination is not particularly high (Fig. A9.11). The variability in the data precludes any definitive within-site stratigraphy from the amino acids alone, but the samples from context 40062, <40042> (SFR10) do show the highest levels of protein breakdown.

#### DISCUSSION

#### Comparison with other sites

The analysis of the closed system of protein within shells allows a new concept of age estimation to be developed, which incorporates multiple amino acid data to give a single measure of the overall extent of protein breakdown within a sample. This measurement, the Intra-crystalline Protein Degradation value (IcPD, formerly DMK) simplifies the presentation of the data to two compound values for each sample, one for the Free and one for the Hydrolysed amino acids. As these should be highly correlated, they can be cross-plotted, giving an aminostratigraphic framework with younger samples lying at low values and older samples with higher values, given a similar temperature history for all the sites. A study has been undertaken of interglacial sites within the UK that has allowed the tentative correlation of the aminostratigraphic framework to the marine oxygen isotope stage (MIS) record (Penkman 2005; Penkman et al. 2013).

On the basis of the relative D/L values and concentrations, the amino acid data from the opercula from Southfleet Road are very similar to the IcPD from UK sites correlated with MIS 11, including Hoxne, Barnham, Swanscombe, Beeches Pit, Elveden and Clacton.

#### CONCLUSIONS

In this study the amino acid data has been used as a relative dating technique to present an aminostratigraphy for the area in question. The conversion of relative sequences into absolute dates and accurate correlation between different areas is currently being undertaken, but preliminary correlations have been made to the MIS record.

The samples from Southfleet Road are consistent with an assignment within MIS 11. The samples from Phase 3 (context 40062, <40042>) show the highest

levels of protein breakdown within the sequence and are statistically distinguishable from those of the Phase 6 deposits. The samples from context 40078, <40275> (SFR4) generally shows the lowest levels of IcPD.

#### GLOSSARY

**18M** $\Omega$  water: The water has a resistivity of 18M $\Omega$ /cm, indicating a lack of ions.

**HPLC grade water:** In addition to low ion content, HPLC grade water has a low organic content (typically < 2 ppb).

Amino acids: the building blocks of proteins and consist of an alpha carbon atom (C) which has four different groups bonded to it: an amino group  $(-NH_2)$ , a carboxyl group (-COOH), a hydrogen atom (-H), and a side chain, (often called an R group). About 20 amino acids normally occur in nature and some of these can undergo further modification (eg, the hydroxylation of proline to hydroxyproline). The amino acids are commonly known by three letter codes (see below, Abbreviations). They exist free in the cell, but are more commonly linked together by **peptide bonds** to form proteins, peptides, and sub-components of some other macromolecules (eg bacterial peptido-glycan).

Amino acid isomers: amino acids occur as two stereoisomers that are chemically identical, but optically different. These isomers are designated as either D (dextro-rotary) or L (laevo-rotary) depending upon whether they rotate plane polarised light to the right or left respectively (Fig 6). In living organisms the amino acids in protein are almost exclusively L and the D/L ratio approaches zero. Two amino acids, isoleucine and threonine, have two chiral carbon atoms and therefore have four stereoisomers each. As well as racemization, these two amino acids can undergo a process known as epimerization. The detection of the L-alloisoleucine epimer (derived from L-isoleucine) is possible by conventional ion-exchange chromatography, and was thus the most commonly used reaction pathway in geochronology.

Asx: Measurements of aspartic acid following hydrolysis also include asparagines, which decomposes to Asx. This combined signal of aspartic acid plus asparagine (Asp +Asn) is referred to as Asx (Collins *et al*, 1999).

**D-amino acid:** dextrorotary amino acid, formed following synthesis of the protein as it degrades over time (remember as 'dead amino acid').

**IcPD:** Conventional racemization analysis tends to report an allosioleucine / isoleucine (A/I or D/L ratio). This amino acid ratio has the advantage of being relative

Our IcPD approach utilises multiple amino acids. However we have avoided trying to give a whole series of D/L values for each amino acid in each sample. Instead we are using a theoretical model of protein degradation. The model outputs are then used to compare observed D/L values of any amino acid against the A/I value at the same stage of protein decomposition. The relative rate of racemization of any amino acid (its DL ratio) is then reported as an A/I equivalent – which as a working title we have named the Intra-crystalline Protein Degradation value (or IcPD) (Penkman, Collins and Kaufman in prep).

Instead of getting a single A/I ratio we obtain a series of (IcPD) values, currently IcPD  $_{Asx}$ , IcPD  $_{Glu}$ , IcPD  $_{Phe}$ , IcPD  $_{Ala}$ , IcPD  $_{Val}$ , and a (pretty unreliable) A/I ratio (IcPD  $_{A/I} = A/I$ ). Other ratios, notably IcPD  $_{Ser}$ , are not currently of implemented in the model – ie we don't have a good degradation model for this amino acid yet.

Because each amino acid has its own particular characteristics, only in a well behaved system will  $IcPD_{Asx} = IcPD_{Glu} = IcPD_{Phe} = IcPD_{Ala} = IcPD_{Val} = A/I.$  If an amino acid has an unusually low ratio (due to modern contamination) or unusually high racemization (due to inclusion of bacterial cell wall contaminants) either some or all of the amino acids will no longer fit to the idealised degradation model. Indeed we can use elevation of  $IcPD_{Asx} = IcPD_{Glu}$  and  $= IcPD_{Ala}$  to provide a bacterial contamination index. We have not done so in this case as there was no evidence of contamination.

**IcPD values:** Intra-crystalline Protein Degradation value, a summary value obtained from multiple amino acid D/L values from a single sample all normalised to a common model of protein degradation and racemization.

**Enantiomers / optical isomers:** mirror image forms of the same compound that cannot be superimposed on one another.

**Epimerisation:** the inversion of the chiral -carbon atom.

**Free amino acid fraction:** The fraction of amino acids directly amenable to racemization analysis. Only amino acids which have already been naturally hydrolysed (over time) are measured. These are the most highly racemised

**Hydrolysis:** A chemical reaction involving water leading to the breaking apart of a compound (in this case the breaking of peptide bonds to release amino acids).

**L-amino acid:** levorotary amino acid, the constituent form of proteins (remember as 'living amino acid').

Peptide bond: an amide linkage between the carboxyl

group of one amino acid and the amino group of another.

**Racemization:** the inversion of all chiral carbon atoms, leading to the decrease in specific optical rotation. When the optical rotation is reduced to zero, the mixture is said to be racemised.

**Stereoisomers:** molecules of the same compound that have their atoms arranged differently in space.

**Total amino acid fraction:** The extent of racemization of all amino acids in a sample, determined following aggressive high temperature hydrolysis with strong mineral acid, which has the effect of breaking apart all peptide bonds so that the total extent of racemization in all amino acids both free and peptide bound are measured.

**Zwitterion:** A dipolar ion containing ionic groups of opposite charge. At neutral pH the ionic form of amino acids which predominates is the zwitterions

#### IcPD = Glx not alle / Ile?

Due to the problem of being unable to accurately measure A/I in our current system, we have switched to a version IcPD which is normalised for Glutamic acid. Although D/L Glu A/I, we have not yet fully established this relationship.

## What does the date estimated from IcPD mean?

The date is our best estimate based upon the temperature history of the site. If we wanted to constrain this further we would need reliable independent dates. There are considerable differences in racemization rates between different molluscs. This reflects differences in rates of decomposition of proteins within the shell – the so-called species effects (Lajoie et al, 1980).

#### Past Use of Amino Acid Racemization Dating.

The presence of proteins in archaeological remains has been known for some time. Nearly fifty years ago Abelson (1954) separated amino acids from subfossil shell. He suggested the possibility of using the kinetics of the degradation of amino acids as the basis for a dating method (Abelson 1955). In 1967 Hare and Abelson measured the extent of racemization of amino acids extracted from modern and sub-fossil Mercenaria mercenaria shells (edible clam). They found that the total amount of amino acids present in shell decreased with the age of the shell. The amino acids in recent shell were all in the L configuration and over time the amount of D configuration amino acid increased (Hare and Abelson 1967). However, even after 35 years this method of dating is still subject to vigorous debate, with the application of AAR to date bone being particularly controversial (Bada 1990; Marshall 1990). Major

reviews of AAR include: Johnson and Miller (1997), Hare, von Endt, and Kokis (1997), Rutter and Blackwell (1995), Murray-Wallace (1993), Bada (1991) and Schroeder and Bada (1976). Racemization is a chemical reaction and a number of factors influence its rate (Rutter and Blackwell, 1995). These include: amino acid structure, the sequence of amino acids in peptides, pH, buffering effects, metallic cations, the presence of water and temperature. To establish a dating method the kinetics and mechanisms of the racemization (and epimerization) reaction of free and peptide bound amino acids need to be established. To this end various workers in the late 1960s and the 1970s studied free amino acids in solution and carried out laboratory simulations of post mortem changes in the amino acids in bone (Bada 1972) and shell (Hare and Abelson 1967; Hare and Mitterer 1969). Attempts have also been made to relate the kinetics of free amino acids, with those in short polypeptides and the proteins in various archaeological samples (Smith and Evans 1980; Bada 1982).

The ability of this technique to be used as a geochronological and geothermometry tool has led to its use in many environmental studies. Goodfriend (1991; 1992) analysed terrestrial gastropods. Other studies have looked at bivalves (Goodfriend and Stanley 1996), foraminifera (Harada et al 1996), ostrich egg shells (Miller et al. 1992; 1997) and speleothems (Lauritzen 1994). Early methods of chemical separation, using Ion-Exchange liquid chromatography, are able to separate the enantiomers of one amino acid found in proteins, Lisoleucine (L-Ile, I), from its most stable diastereoisomer alloisoleucine (D-aile, A). By analysing the total protein content within non-marine mollusc shells from UK interglacial sites, an amino acid geochronology was developed using the increase in A/I, with correlations made with the marine oxygen isotope warm stages (Bowen et al. 1989).

#### Abbreviations used in this report

| Abbrev  | 1-letter<br>code | number<br>chiral cer | of<br>htres                  |
|---------|------------------|----------------------|------------------------------|
| Ala     | А                | 1                    | Alanine                      |
| Arg     | R                | 1                    | Arginine                     |
| Acn     |                  |                      | acetonitrile                 |
| AA      |                  |                      | Amino acid(n)                |
| Asn     | Ν                | 1                    | Asparagine                   |
| Asp     | D                | 1                    | Aspartic acid                |
| Asx     |                  |                      | Asparagine + Aspartic acid + |
|         |                  |                      | succinimide                  |
| Asu     |                  |                      | Succinimide                  |
| Cys     | С                | 1                    | Cysteine                     |
| DCM     |                  |                      | Dichlormethane               |
| GABA    |                  |                      | γ-Aminobutyric acidγ         |
| Gln     | Q                | 1                    | Glutamine                    |
| Glu     | E                | 1                    | Glutamic acid                |
| Gly     | G                | 0                    | Glycine                      |
| His     | Η                | 1                    | Histidine                    |
| HPLC    |                  |                      | High-Performance Liquid      |
|         |                  |                      | Chromatography               |
| Нур     |                  |                      | Hydroxyproline               |
| IBD(L)C |                  |                      | N-Isobutyryl-D(L)-Cysteine   |
| Ile     | Ι                | 2                    | Isoleucine                   |
| Leu     | L                | 1                    | Leucine                      |
| Lys     | Κ                | 1                    | Lysine                       |
| MeOH    |                  |                      | Methanol                     |
| Met     | Μ                | 1                    | Methionine                   |
| Nle     |                  |                      | Norleucine                   |
| OPA     |                  |                      | ortho-Phthaldialdehyde       |
| Orn     |                  |                      | Ornithine                    |
| Phe     | F                | 1                    | Phenylalanine                |
| Pro     | Р                | 1                    | Proline                      |
| Ser     | S                | 1                    | Serine                       |
| Thr     | Т                | 2                    | Threonine                    |
| Trp     | W                | 1                    | Tryptophan                   |
| Tyr     | Y                | 1                    | Tyrosine                     |
| Val     | V                | 1                    | Valine                       |

# Appendix 10

# The bird remains

by John R. Stewart

## INTRODUCTION

The bird remains were identified by means of modern comparative material of the author. Avian anatomical description follows the terminology described in Baumel (1979). Stewart and Hernández Carrasquilla (1997) published a review of literature which aids in the identification of bird skeletal remains. Woolfenden (1961) has been consulted for the identification of the Anseriformes as a whole, Woelfle (1967) for ducks, Stewart (1992) for the Turdidae. Comparative metrical data used in the identifications and measurement protocols come from the above publications. The size categories follow Harrison and Stewart (1999).

# DESCRIPTION OF THE SOUTHFLEET ROAD BIRD REMAINS

# Context 40070

#### Sample <40162>

- 1. Os carpi ulnare Passeriformes (< Blackbird size)
- 1. Os carpi ulnare Passeriformes (< House sparrow size)</li>

#### Sample <40035>

 Proximal (L) ulna Small bird – cf. Passeriformes (House sparrow size)

#### Sample <40307>

 Phalange, proximal end with shaft, distal end damaged.
 Small bird – cf. Passeriformes (Blackbird – House sparrow size)

#### Sample <40314>

- 1. Proximal (R) ulna. Passeriformes (Blackbird size)
- 2. Coracoid (R) fragment region of the procoracoid Passerine (Blackbird size)

## Sample <40315>

- 1. Humerus (R) shaft
- Passeriformes (< Blackbird size) 2. Distal (L) tibiotarsus
- Small bird cf. Passeriformes (< House sparrow size)

#### Sample <40317>

- 1. Proximal (L) carpometacarpus Passeriformes (House sparrow size)
- 2. Proximal (L) tarsometatarsus Passeriformes (House sparrow size)
- Distal tibiotarsus (L/R?) Immature as no articulation Small bird – cf. Passeriformes (< House sparrow size)

#### Sample <40318>

1. Distal (L) tibiotarsus Passeriformes (Blackbird size)

#### Sample <40329>

- 1. Tibiotarsus (L) shaft (broken into 2 fragments) Anatidae (Mallard size)
- Scapula (R) articular end with ca. 2cm of corpus present (broken into 2 fragments) Anatidae (Mallard size)
- 3. Distal (R) humerus Passeriformes (House sparrow size)
- 4. Distal (L) humerus Passeriformes (House sparrow size)
- 5. Distal (L) tarsometatarsus Passeriformes (House sparrow size)
- 6. Distal (L) tarsometatarsus trochlea missing Passeriformes (House sparrow size)

#### Sample <40033X>

- 1. Distal (R) ulna Small bird cf. Passeriformes (Blackbird size)
- 2. Phalange of pes Not Anatidae? (Mallard size)
- Distal tibiotarsus (R) Small bird (House sparrow size)
- 4. Proximal (R) ulna Small bird cf. Passeriformes (House sparrow size)

#### Sample <40330>

- 1. Distal humerus (L)
- Passeriformes (Backbird size) 2. Distal (L) ulna
- Small bird cf. Passeriformes (House sparrow size) 3. Thoracic vertebra
- Small bird (Blackbird size)
- 4. Possibly a bird distal carpometacarpus fragment

# Sample <40331>

- 1. Proximal (L) humerus (Bp: 8.1 mm). *Turdus* cf. *philomelos / iliacus*. The morphological characters that can be used to distinguish *Turdus* from *Sturnus* (Stewart 1992, 2007) were applied.
- Carpometacarpus (R) (GL: 18.0) *Turdus / Sturnus*. The morphological characters that can be used to distinguish *Turdus* from *Sturnus* (Stewart 1992; 2007) were not applied due to damage to proximal articulation. Based on modern measurements this would be *T. philomelos / iliacus* (Stewart 1992; 2007).
- 3. Distal (R) ulna Anatidae (Mallard size?)
- Sternal extremity of coracoid (L) Small bird – cf. Passeriformes (Blackbird size)

# Sample <40335>

1. Proximal ungual phalanx fragment - tip broken off

Small bird (House sparrow size)

- Distal tibiotarsus (L/R?) Immature as no articulation Small bird (House sparrow size)
- 3. Phalange of pes
- Medium sized bird?

#### Sample <40347>

- Tarsometatarsus (L) shaft Anatidae (Mallard size) – immature as has grainy texture to shaft
- 2. Proximal (L) carpometacarpus Passeriformes (House sparrow size)

## Sample< 40381>

- 1. Os carpi radiale (?) Anatidae (Mallard size)
- Ungual phalanx
   Small bird cf. Passeriformes (House sparrow size)